Management of Refractory Ventricular Fibrillation

Rachael Scott, PharmD
PGY2 Critical Care Pharmacy Resident
Pharmacy Grand Rounds
January 22, 2019
Patient Case

Code 45 Response

• AB is a 30 year old male POD#3 from aortic root and valve replacement

• Received 2 defibrillations and 1 mg of epinephrine
• iSTAT in progress
Is AB in refractory ventricular fibrillation?

- A. Yes
- B. No
Objectives

• Define refractory ventricular fibrillation
• Compare different antiarrhythmic agents for the management of refractory ventricular fibrillation
• Examine emerging strategies for the management of refractory ventricular fibrillation
Etiology

- Myocardial ischemia
- Electrolyte disturbances
- QT prolongation
- Drug toxicity
When Does it Become Refractory?

• Early definitions
 • Failure to respond to first line therapy
 • Failure to terminate after five defibrillations
 • Dependent upon ICD placement

• AHA 2017 guideline:
 • Cardiac instability defined by ≥3 episodes of sustained VT, VF or appropriate ICD shocks within 24 hours
Which drug do you recommend next?

- A. Amiodarone
- B. Lidocaine
- C. Procainamide
- D. Bretylium
Advanced Cardiac Life Support

VF/VT?
- Defibrillate
- CPR 2 minutes

VF/VT
- Defibrillate
- CPR 2 minutes
- *Epinephrine q3-5 min*

VF/VT
- Defibrillate
- Amiodarone 300 mg
- Lidocaine 1.5 mg/kg if unavailable
- CPR 2 minutes
Choice of Antiarrhythmic
Amiodarone

1999
- ARREST
- 500 patients randomized, double-blind study of 300 mg amio IV to placebo in out-of-hospital cardiac arrest
- Amio group more likely to achieve ROSC

2002
- ALIVE
- 347 patients randomized to 1.5 mg/kg lidocaine or 5 mg/kg amiodarone after out-of-hospital cardiac arrest
- Amio group more likely to survive to hospital admission

2016: ALPS
Amiodarone 300 mg
Lidocaine 120 mg
Placebo

Kudenchuk PJ et al. NEJM 1999
Dorien et al. NEJM 2002
Kudenchuk PJ et al. NEJM 2016
Amiodarone, Lidocaine or Placebo Study

Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Amiodarone (n=974)</th>
<th>Lidocaine (n=993)</th>
<th>Placebo (n=1059)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSC</td>
<td>35.9%</td>
<td>39.9%</td>
<td>34.6%</td>
<td>0.52</td>
</tr>
<tr>
<td>Hospital admission</td>
<td>45.7%</td>
<td>47%</td>
<td>39.7%</td>
<td>0.01</td>
</tr>
<tr>
<td>Survival to discharge</td>
<td>24.4%</td>
<td>23.7%</td>
<td>21%</td>
<td>0.08</td>
</tr>
<tr>
<td>mRS ≤ 3</td>
<td>18.8%</td>
<td>17.5%</td>
<td>16.6%</td>
<td>0.19</td>
</tr>
</tbody>
</table>

mRS = modified Rankin score
ROSC = return of spontaneous circulation

Kudenchuk PJ et al. NEJM 2016
Amiodarone or Lidocaine

Takeaways

• Both amiodarone and lidocaine showed similar benefits in short-term outcomes
 • Increase in survival to hospital admission vs placebo

• Neither improved survival to hospital discharge
 • Poor neurologic outcomes
 • Median mRS of 5
AB

Ongoing chest compressions

3 defibrillations

3 mg epinephrine

300 mg amiodarone

200 mg lidocaine
Is There a Role for Procainamide?

PROCAMIO

Stable VT

Procainamide 10 mg/kg (n=33)
- 9% cardiac events
- 67% termination of VT

Amiodarone 5 mg/kg (n=29)
- 41% cardiac events
- 38% termination of VT

Ortiz et al. Eur Heart J 2016
What About Procainamide?
Role In Out of Hospital Arrest

VT/VF

Procainamide eligibility

176 received procainamide
- 45% admitted to hospital
- 18% discharged

489 did not receive procainamide
- 62% admitted to hospital
- 32% discharged

Markel et al. Acad Emerg Med 2010
Antiarrhythmic Agents
Other agents

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Trials</th>
<th>Pearls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bretylium</td>
<td>Inhibits NE release, K⁺ channel blocker</td>
<td>Burn et al 1964 Chandrasekaran 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discontinued</td>
</tr>
<tr>
<td>Ranolazine</td>
<td>Blockade of frequency dependent Na⁺ channels</td>
<td>RAID 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Studied as primary prevention in patients with ICD and not found to have benefit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Drug of choice in Brugada syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Congenital short QT syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• *Increased risk of mortality in post-MI patients</td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ongoing chest</td>
<td>compression</td>
<td></td>
</tr>
<tr>
<td>14 defibrillations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 mg epinephrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 mg amiodarone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mg lidocaine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 g procainamide</td>
<td>on its way from pharmacy</td>
<td></td>
</tr>
</tbody>
</table>
Magnesium

For patients with recurrent TdP, intravenous Mg is recommended

12 consecutive patients with TdP

9/12 TdP patients aborted with 2 g Mg

5 VF patients did not abort

In patients with VF not related to TdP, administration of Mg is not beneficial

RCT of refractory VF patients (>3 shocks)

No difference in ROSC (17% vs 13%) or Survival (4% vs. 2%)

*marked hypokalemia may be an indication to replace magnesium
<table>
<thead>
<tr>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing chest compressions</td>
</tr>
<tr>
<td>20 defibrillations</td>
</tr>
<tr>
<td>10 mg epinephrine</td>
</tr>
<tr>
<td>600 mg amiodarone</td>
</tr>
<tr>
<td>200 mg lidocaine</td>
</tr>
<tr>
<td>1 g procainamide on its way from pharmacy</td>
</tr>
<tr>
<td>Magnesium 4 g IV</td>
</tr>
</tbody>
</table>
Poll everywhere

• Which intervention would you consider to be most likely to benefit AB?
 • A. Esmolol
 • B. Stellate Ganglion Block
 • C. Isoproterenol
 • D. Extracorporeal Membrane Oxygenation
AB

<table>
<thead>
<tr>
<th>Ongoing chest compressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 defibrillations</td>
</tr>
<tr>
<td>10 mg epinephrine</td>
</tr>
<tr>
<td>600 mg amiodarone</td>
</tr>
<tr>
<td>200 mg lidocaine</td>
</tr>
<tr>
<td>1 g procainamide on its way from pharmacy</td>
</tr>
<tr>
<td>Magnesium 4 g IV</td>
</tr>
</tbody>
</table>
Epinephrine in Cardiac Arrest – Harmful?

• Increases myocardial oxygen demand
 • Primarily through activation of beta-1 receptors
 • Leads to worsening ischemic injury
 • Subsequent increases in cAMP lead to excess Ca^{2+} concentrations in cardiocyte
 • Free radicals as byproducts of catecholamine degradation contribute to myocardial injury
 • *Lowers VF threshold*

Beta Blockade – Just a theory?
Dogs in Ventricular Fibrillation

22 dogs induced into cardiac arrest

Control (n=11)
6/11 dogs successfully defibrillated

Propranolol (n=11)
9/11 dogs successfully defibrillated

Ditchey RV et al. J Am Coll Cardiol. 1994
Beta Blockade

Early Results Takeaways

• Animal data suggests potential benefit from *pretreatment* with beta blockade

• Early case reports describe termination of refractory VF with intravenous propranolol
 • Refractory definitions vary
 • Unclear role of other antiarrhythmics in these cases

• Early 1990’s practice recommendations published in the Journal of Critical Illness and by the AHA recommend 1 mg/min propranolol IV
Beta Blockade
Is There Still a Benefit?

VT/VF

ACLS Protocol (n=22)
- Lidocaine 1 mg/kg → Continuous infusion
- Procainamide 100 mg q5 minutes

Sympathetic Blockade (n=27)
- Propranolol (n=14)
- Esmolol (n=6)
- Ganglion Block (n=6)

Nademanee K et al. Circulation 2000
ACLS vs. Sympathetic Blockade

Results

ACLS

4/22 patients survived

18 expired (all VF)

Sympathetic Blockade

21/47 patients survived

6 expired (3 VF)

Nademanee K et al. Circulation 2000
Beta Blockade
Is there enough evidence to recommend?

<table>
<thead>
<tr>
<th>Study design</th>
<th>Patient s</th>
<th>Population</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miwa et al</td>
<td>Prospective, observational</td>
<td>42</td>
<td>Electrical storm refractory to class III agents</td>
<td>Landiolol</td>
</tr>
<tr>
<td>Driver et al</td>
<td>Retrospective observational</td>
<td>25</td>
<td>Out of hospital arrest with RVF</td>
<td>Esmolol</td>
</tr>
<tr>
<td>Lee et al</td>
<td>Retrospective, pre/post protocol</td>
<td>41</td>
<td>Out of hospital arrest with RVF</td>
<td>Esmolol</td>
</tr>
</tbody>
</table>

AHA 2017 Guidelines:
In patients with a recent MI who have VT/VF storm, an intravenous beta blocker can be useful (IIa, B-NR)
AB

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing chest compressions</td>
</tr>
<tr>
<td>20 defibrillations</td>
</tr>
<tr>
<td>10 mg epinephrine</td>
</tr>
<tr>
<td>600 mg amiodarone</td>
</tr>
<tr>
<td>200 mg lidocaine</td>
</tr>
<tr>
<td>1 g procainamide on its way from pharmacy</td>
</tr>
<tr>
<td>Magnesium 6 g IV</td>
</tr>
</tbody>
</table>

Esmolol 500 mcg
Beta Blockade
Stellate Ganglion Block

• Stellate ganglion is a group of nerves located at the base of the neck
 • Controls sympathetic function
• Block can be achieved with targeted injection of local anesthetic
 • Lidocaine, xylocaine, bupivacaine
• Not currently included in AHA guidelines
Stellate Ganglion Block

Evidence

- Many case reports of termination of electrical storm after ganglion block
- 2017 review found 38 patients from 23 studies
 - Most commonly mixed VT/VF
 - Precipitating causes were MI or prolonged QT
 - Bupivacaine most commonly utilized
 - Decreased VA burden from 12 to 1 episode/day
 - 80% of patients survived to discharge
<table>
<thead>
<tr>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing chest compressions</td>
</tr>
<tr>
<td>25 defibrillations</td>
</tr>
<tr>
<td>12 mg epinephrine</td>
</tr>
<tr>
<td>600 mg amiodarone</td>
</tr>
<tr>
<td>200 mg lidocaine</td>
</tr>
<tr>
<td>1 g procainamide on its way from pharmacy</td>
</tr>
<tr>
<td>Magnesium 6 g IV</td>
</tr>
<tr>
<td>Esmolol 500 mcg</td>
</tr>
<tr>
<td>Stellate Ganglion Block</td>
</tr>
</tbody>
</table>
Overdrive pacing
Is Beta Activity Always Harmful?

- AHA Guidelines:
 - In patients with recurrent TdP associated with acquired QT prolongation and bradycardia, increasing heart rate with pacing or isoproterenol are recommended (I, B-NR)
Overdrive Pacing

Isoproterenol

• Potent β_1 and β_2 agonist

• Subsequent increase in heart rate can shorten QT interval and effective refractory period
 • Contraindicated in congenital long QT syndrome

• Multiple case reports describe termination of TdP with isoproterenol administration
 • Likely most useful as a bridge to transvenous pacing

• One case report describes reversal of RVF in an adult patient with apparent short QT syndrome
 • Limited other options for treatment

<table>
<thead>
<tr>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing chest compressions</td>
</tr>
<tr>
<td>25 defibrillations</td>
</tr>
<tr>
<td>12 mg epinephrine</td>
</tr>
<tr>
<td>600 mg amiodarone</td>
</tr>
<tr>
<td>200 mg lidocaine</td>
</tr>
<tr>
<td>1 g procainamide</td>
</tr>
<tr>
<td>Magnesium 12 g IV</td>
</tr>
<tr>
<td>Esmolol 500 mcg</td>
</tr>
<tr>
<td>Stellate Ganglion Block</td>
</tr>
</tbody>
</table>
Extracorporeal CPR

Background

• Extracorporeal Membrane Oxygenation (ECMO) has been utilized during CPR as a bridge to definitive treatment
 • Referred to as ECPR

• Animal models demonstrate efficacy of ECPR
 • Pigs with occluded LAD and refractory VF cannulated after 45 minutes of resuscitation
 • 60% able to achieve ROSC after revascularization

Debaty et al. Resuscitation 2017
Sideris G et al. Resuscitation 2014
ECPR

Does it improve outcomes?

- Case series vary in mortality/morbidity rates
 - Little data in North American population
- Extracorporeal Life Support Organization (ELSO) keeps prospective database of cases

![Survival and Cannulation Time Graphs]

Survival

- ECMO: 30%
- OHCA 2016: 10%
- IHCA 2016: 20%

Cannulation Time

- Survival: 30
- Non-survival: 60
ECPR

SAVE-J Trial

VF/VT

- 26 ECPR hospitals: 13.7% favorable neurologic outcome
- 20 non-ECPR hospitals: 1.9% favorable neurologic outcome

Sakamoto T et al. Resuscitation 2014
Ongoing chest compressions
35 defibrillations
14 mg epinephrine
600 mg amiodarone
200 mg lidocaine
1 g procainamide
Magnesium 20 g IV
Esmolol 500 mcg
Stellate Ganglion Block

ECPR
Future directions

• In hospital cardiac arrest
• In hospital ECPR
• Continuous infusions
• Combination therapy
Management of Refractory Ventricular Fibrillation

Rachael Scott, PharmD
PGY2 Critical Care Pharmacy Resident
Pharmacy Grand Rounds
January 22, 2019