Monotherapy or Combination Therapy for HCAP?
Hey Teacher! Leave Them Quinolones!

David J. Roy, PharmD
PGY1 Pharmacy Resident

Pharmacy Grand Rounds
February 9th, 2016
Objectives

• Review American Thoracic Society (ATS) / Infectious Diseases Society of America (IDSA) guidelines of health-care associated pneumonia for empiric antimicrobial therapy of gram negative pathogens

• Describe advantages and disadvantages surrounding empiric monotherapy versus combination antimicrobial therapy for gram negative coverage

• Discuss how the 2015 Mayo Clinic (Rochester) combination antibiogram can guide empiric treatment regimens
Poll

Pseudomonas aeruginosa (PSA) is a “two drug bug”

1. Yes
2. No
Epidemiology

- CDC indicates that pneumonia is the leading cause of infectious disease-related deaths in the United States
 - 1.2 million of 35 million annual hospitalizations
- PSA accounts for 20-60% mortality
- Increasing prevalence of MDR Gram-negative infections leads to increase utilization of broad spectrum antibiotics
Evolution of Pneumonia Classifications

1996 IDSA / ATS Guidelines

- CAP
- HAP
- VAP

2005 IDSA / ATS Guidelines

- HCAP

Criteria:
- Hospitalization for ≥ 2 days within 90 days
- Nursing home or long-term care facility residence
- IV antibiotics, chemotherapy or wound care within the past 30 days
- Hemodialysis clinic

References:
- Am J Respir Crit Care Med 1996
- Am J Respir Crit Care Med 2005
Kollef, et al. *CHEST*. 2005

Mortality rate, % patients

- CAP (n = 2221): 10%
- HCAP (n = 988): 19.8%
- HAP (n = 835): 18.8%
- VAP (n = 499): 29.3%
Empiric HCAP Coverage

- Anti-PSA β-lactam/β-lactamase inhibitor
- Anti-PSA Cephalosporin
- Anti-PSA Carbapenem

PLUS

- Anti-PSA Fluoroquinolone
- Aminoglycosides

As mentioned, the benefits of combination therapy are unclear, with the only data supporting this practice coming from a study of \textit{P. aeruginosa} bacteremia (few of which were due to pneumonia) which showed that patients receiving combination therapy were less likely to die (258). A prospective...

- 200 patients with *P. aeruginosa* bacteremia
 - PNA as primary source in 10%
- Primary Outcome: Mortality (Death at Day 10)
 - Combination therapy
 - Piperacillin or Ticarcillin + Aminoglycoside
 - Mortality: 27%
 - Monotherapy
 - Aminoglycoside
 - Mortality: 47%
Time to reevaluate HCAP criteria?

• Gross et al found that MDROs were uncommon in HCAP (5.9%) in a US tertiary medical center

• Chen et al found no difference in clinical outcomes treating HCAP patients with CAP guidelines

• Jones et al found increased prescribing of broad-spectrum agents with no increase in cultures for PSA

Hospitalization for ≥ 2 days within 90 days
Nursing home or long-term care facility residence
IV antibiotics, chemotherapy or wound care within the past 30 days
Hemodialysis clinic

Sensitivity: 52.2%
Specificity: 67.7%

Proportion of Hospitalized Patients, %

- **Single Pseudomonas Coverage**
- **Double Pseudomonas Coverage**

<table>
<thead>
<tr>
<th>Year</th>
<th>Single Pseudomonas Coverage</th>
<th>Double Pseudomonas Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>2007</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>2008</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>2009</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>35</td>
<td>12</td>
</tr>
</tbody>
</table>

![Graph showing the percentage of patients with positive cultures for Pseudomonas from 2006 to 2010.](image-url)
FQ and Resistance Among Gram Negatives

Graph showing the trend of Fluoroquinolone Use (kg x 1000) and the percentage of strains resistant to Ciprofloxacin (%) from 1993 to 2000 for P. aeruginosa and GNR. The use of Fluoroquinolones increases over time, while the percentage of resistant strains also increases.
Preserving the β-lactam Backbone

β-lactamases
Double coverage
Efflux pumps
Target site modifications

Antimicrobial Stewardship
Double coverage
Rapid detection
Optimize PK/PD

©2016 MFMER | slide-13
Hesitation of Double-Coverage

• Increased drug toxicity
• Increased costs
• Increased risk of superinfection with MDR bacteria
• *Clostridium difficile* incidence

Yu VL. *Lancet Infect Dis.* 2011
Justification of Combination Therapy

1) Synergistic effect of two anti-pseudomonal antibiotics

2) Prevent emergence of resistance

3) Increase likelihood that at least one drug is active against a MDR pathogen
Synergy: β-lactams and Aminoglycosides/FQ

• First PK/PK analysis to compare β-lactam with aminoglycoside versus FQ against *P. aeruginosa*

• In vitro
 • AG: 79%
 • FQ: 57%

• In vivo data
 • Meta-analysis showing no difference in clinical outcomes in septic patients with combination vs. monotherapy

Prevent Resistance

• FQ associated with selecting for mutant *P. aeruginosa* that overproduce multidrug efflux pumps
 • Confer β-lactam/AG cross resistance

• Development of resistant phenotypes during therapy has been documented
Increase Odds of Covering Your Bug

P. aeruginosa

Ciprofloxacin
78 %

Pip/Tazo
86 %

How many times do they miss?
The Misleading Antibiogram

Piperacillin/Tazobactam: 86%
Ciprofloxacin: 78%

<table>
<thead>
<tr>
<th>Microorganism (number tested)</th>
<th>Amp <8</th>
<th>Cefaz <2</th>
<th>Ceftriaxone<1</th>
<th>Cefaz <8</th>
<th>Cefep<8</th>
<th>Mero<1</th>
<th>Ertal <0.5</th>
<th>Amp/ Sulb <8/4</th>
<th>Pip/ Tazo <16/4</th>
<th>Gent ≤4</th>
<th>Tobra ≤4</th>
<th>Amik <16</th>
<th>Cipro <1</th>
<th>Levo <2</th>
<th>TMP/ SMX <2/38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa<sup>1</sup> (531)</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>83</td>
<td>83<sup>1</sup></td>
<td>86</td>
<td>85</td>
<td>94</td>
<td>93</td>
<td>78</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100% - 86% = 14%
100% - 78% = 22%

Pip/Tazo Resistant = 14% → 0.14 × 0.22 = 3%
Cipro Resistant = 22% → 0.03/97%
2015 Mayo Clinic (Rochester) PSA Isolates

<table>
<thead>
<tr>
<th></th>
<th>% Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=489</td>
<td></td>
</tr>
<tr>
<td>Monotherapy</td>
<td></td>
</tr>
<tr>
<td>Pip/Tazo</td>
<td>86%</td>
</tr>
<tr>
<td>Cefepime</td>
<td>79%</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>73%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>78%</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>93%</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>83%</td>
</tr>
<tr>
<td>Amikacin</td>
<td>91%</td>
</tr>
<tr>
<td>Combo with Ciprofloxacin</td>
<td>92% 97%</td>
</tr>
<tr>
<td>Combo with Tobramycin</td>
<td>96% 98%</td>
</tr>
<tr>
<td>Combo with Amikacin</td>
<td>99% 95%</td>
</tr>
</tbody>
</table>

Resistance ≠ Statistical Independence
What About Just ICU’s?

Pseudomonas isolates ICU 2015, % Susceptible

<table>
<thead>
<tr>
<th></th>
<th>N=126</th>
<th>Monotherapy</th>
<th>Combo with Levofloxacin</th>
<th>Combo with Tobramycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pip/Tazo</td>
<td>77%</td>
<td>86%</td>
<td>93%</td>
<td>94%</td>
</tr>
<tr>
<td>Cefepime</td>
<td>72%</td>
<td>80%</td>
<td></td>
<td>87%</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. aeruginosa % susceptible
- Pip/Tazo 77%
 - 93%
- Levofloxacin 70%
Empiric Coverage of ICU Patients for Infections Due to β-lactam Resistant *Pseudomonas aeruginosa* with Combination Therapy: A Needs Assessment

- Clinical question
 - Should an aminoglycoside be administered in combination with an anti-pseudomonal β-lactam as routine empiric therapy in critically ill patients at risk for infection with β-lactam resistant PSA?

- Retrospective study

- Adult ICU patients (2013) with at least one *P. aeruginosa* isolate resistant to one anti-pseudomonal β-lactam
Results

15,113 ICU admissions

n = 61 patients (100 isolates)

- 19/61 (31.2%) had PSA recovered within previous year
- 38/61 (62.3%) had structural respiratory tract changes and/or depressed CNS function
- 10/61 (16.4%) had diagnosis of sepsis
- 21/61 (34.4%) died during the hospitalization or shortly thereafter
- 8/21 who died received “mismatch therapy”
 - Drug administered ≠ in vitro susceptibility
 - Only 1 death was possibly related to “mismatch therapy”

Data courtesy of LM Baddour, MD, FIDSA, FAHA
Summary

15,113
61
21
8
1
Impact of Combination Antibiogram on FQ prescribing patterns for HCAP

- Retrospective pre/post provider education intervention study evaluating antibiotic prescribing patterns (FQ DOT*) and patient outcomes
 - FQ DOT decreased post-intervention: 3.7 vs 1.4 days (p<0.001)
 - Double coverage reduced by 2.1 days (p<0.001)
 - No difference on clinical outcomes
 - Concluded double coverage would benefit <1% of patients with HCAP

Question

Which of the following is not a common rationale for “double coverage”?

1) Synergy of two antibiotics
2) Prevent resistance
3) Increase odds that you’ll cover the organism
4) Achieve steady state quicker
Question

Utilizing a unit-specific combination antibiogram will improve empiric therapy for Gram-negative infections.

1) True
2) False
Conclusion

• 2005 ATS / IDSA guidelines for empiric HCAP coverage recommend combination antimicrobials targeted at gram negatives, specifically *Pseudomonas aeruginosa*

• Array of literature supports both advantages and disadvantages surrounding empiric monotherapy versus combination antimicrobial therapy

• Using the 2015 Mayo Clinic (Rochester) combination antibiogram may help optimize empiric treatment regimens
Questions?
Monotherapy or Combination Therapy for HCAP?
Hey Teacher! Leave Them Quinolones!

David J. Roy, PharmD
PGY1 Pharmacy Resident
Pharmacy Grand Rounds
February 9th, 2016

2016 ATS / IDSA HCAP Guidelines Update:
Spring 2016!