So Long HCAP! The Updated IDSA Hospital-Acquired and Ventilator-Associated Pneumonia Treatment Guidelines

John Trnka, PharmD

Pharmacy Grand Rounds
11/14/2017
Abbreviations

- HAP: hospital-acquired pneumonia
- VAP: ventilator-associated pneumonia
- HCAP: healthcare-associated pneumonia
- IDSA: Infectious Diseases Society of America
- MDRO: multidrug-resistant organism
- CAD: coronary artery disease
- A-fib: atrial fibrillation
- BPH: benign prostatic hyperplasia
- CAP: community-acquired pneumonia
- RRT: renal replacement therapy
- CrCl: creatinine clearance
Objectives

• Describe the significant burden that VAP and HAP have on the United States healthcare system

• Identify the key differences between the 2005 and the 2016 IDSA guidelines

• Select appropriate antibiotic treatment regimens for patients who are diagnosed with HAP or VAP based off of individual and institutional factors
Definitions from 2016 HAP/VAP Guidelines

• HAP: an episode of pneumonia not associated with mechanical ventilation that develops 48 hours or more after admission and did not appear to be incubating at the time of admission.

• VAP: an episode of pneumonia that is associated with mechanical ventilation and develops 48-72 hours after endotracheal intubation.

Clin Infect Dis 2016; 63: e61-e111
What is the estimated additional cost per hospitalization in patients who develop VAP compared to patients who do not?

- A. $10,000
- B. $20,000
- C. $40,000
- D. $70,000
What is the estimated additional cost per hospitalization in patients who develop VAP compared to patients who do not?

- A. $10,000
- B. $20,000
- C. $40,000
- D. $70,000
HAP/VAP Epidemiology

• HAP/VAP account for 22% of all hospital acquired infections
• Some controversy regarding mortality rates
• ~50% of HAP develop serious complications
• Little debate on economic burden of VAP
 • Prolonged mechanical ventilation (7.6 vs 11.5 days)
 • Prolonged hospitalization (11.5 vs 13.1 days)
 • $40,000 in additional costs

Clin Infect Dis 2016; 63: e61-e111
Mechanism of VAP
Updates in 2016 Guidelines

<table>
<thead>
<tr>
<th>Factor</th>
<th>2005</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence grading</td>
<td>Evidence quality</td>
<td>GRADE methodology</td>
</tr>
<tr>
<td>HCAP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Biomarker use</td>
<td>N/A</td>
<td>Procalcitonin</td>
</tr>
<tr>
<td>Empiric antibiotic coverage</td>
<td>Narrow coverage in some cases</td>
<td>Broad coverage for all</td>
</tr>
<tr>
<td>Double-cover Pseudomonas</td>
<td>Per risk factors</td>
<td>Reduced # of risk factors</td>
</tr>
<tr>
<td>Unit antibiograms</td>
<td>Local ok</td>
<td>Prefer individual units</td>
</tr>
<tr>
<td>Duration of therapy</td>
<td>8-15 days</td>
<td>7 days for all</td>
</tr>
</tbody>
</table>

Clin Infect Dis 2016; 63: e61-e111
GRADE Methodology

<table>
<thead>
<tr>
<th></th>
<th>Strong Recommendation</th>
<th>Weak (Conditional) Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Most patients would want the suggested course of action, but some would not.</td>
<td>Most patients would want the suggested course of action, but many would not.</td>
</tr>
<tr>
<td>Clinicians</td>
<td>Most individuals should receive the intervention.</td>
<td>Personalized interventions or decisions should be made for each patient in order to optimize care.</td>
</tr>
<tr>
<td>Policy Makers</td>
<td>The recommendation can be adopted as policy in most situations.</td>
<td>Policymaking will require substantial debate and involvement of various stakeholders.</td>
</tr>
</tbody>
</table>
Recommendations From the Evidence

Strong Recommendations
- Moderate Quality Evidence: 7
- Low Quality Evidence: 6
- Very Low Quality Evidence: 6

Weak Recommendations
- Moderate Quality Evidence: 1
- Low Quality Evidence: 13
- Very Low Quality Evidence: 10

Clin Infect Dis 2016; 63: e61-e111
2005 Guideline Definition of HCAP

Risk Factors for HCAP Per 2005 IDSA Guidelines

<table>
<thead>
<tr>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalization for two or more days within 90 days of infection onset</td>
</tr>
<tr>
<td>Nursing home or long-term care facility resident</td>
</tr>
<tr>
<td>Intravenous infusion therapy (including antibiotics) within 30 days</td>
</tr>
<tr>
<td>Chronic dialysis within 30 days</td>
</tr>
<tr>
<td>Home wound care</td>
</tr>
</tbody>
</table>

Am J Respir Crit Care Med 2005; 171: 388–416
Removal of HCAP From 2016 Guidelines

• Originally felt that patients who were exposed to healthcare were at risk for MDROs

• Studies assessing these risks were of poor quality and were subject to publication bias

• Individual patient characteristics do play a role in risk of infection with MDROs
 • Some allusion to adding HCAP in the upcoming CAP guidelines
Patient Case

• 87 y/o male admitted for fever, productive cough and increasing shortness of breath

• PMH: CAD, A-fib, BPH, osteoarthritis, no allergies

• Labs: WBC 16, Temp 39 °C, O₂ sat 82% on room air, CrCl 50 ml/min
 • Sputum cx: pending

• History
 • Resides at local nursing home
 • Treated ~4 weeks ago successfully for cellulitis of right hand with cephalexin 500 mg PO q12hrs x 10 days
Which initial antibiotic regimen is the most appropriate for our patient?

• A: Vancomycin 15-20 mg/kg IV daily + cefepime 1 g IV q12hrs
• B: Amoxicillin/clavulanate 875 mg PO q12hrs
• C: Vancomycin 15-20 mg/kg IV daily + piperacillin/tazobactam 3.375 g IV q6hrs + levofloxacin 750 mg IV daily
• D: Ceftriaxone 1 g IV daily + azithromycin 500 mg IV daily
Which initial antibiotic regimen is the most appropriate for our patient?

- A: Vancomycin 15-20 mg/kg IV daily + cefepime 1 g IV q12hrs
- B: Amoxicillin/clavulanate 875 mg PO q12hrs
- C: Vancomycin 15-20 mg/kg IV daily + piperacillin/tazobactam 3.375 g IV q6hrs + levofloxacine 750 mg IV daily
- D: Ceftriaxone 1 g IV daily + azithromycin 500 mg IV daily
Use of Biomarkers in HAP/VAP: Diagnosis

- Procalcitonin - no (*strong recommendation*, *moderate*-quality evidence)
- sTREM-1 - no (*strong recommendation*, *moderate*-quality evidence)
- CRP - no (*weak recommendation*, *low-quality evidence*)
Utility of Procalcitonin in Duration of Therapy

• Suggested to use procalcitonin in addition to clinical criteria vs. clinical criteria alone for antibiotic discontinuation *(weak recommendation, low-quality evidence)*.

 • Potential Benefit: reduced side-effects and costs

 • Potential Harm: inappropriate discontinuation of necessary therapy

Clin Infect Dis 2016; 63: e61-e111
Cochrane Database Syst Rev 2012; 9: CD007498
Empiric Coverage for HAP and VAP

- Cover for *S. aureus*, *P. aeruginosa*, and other GNRs in **ALL** patients (*strong recommendation, very low-quality evidence*)
- When covering MRSA, use vancomycin or linezolid (*strong recommendation, low quality evidence*)
- Do not use aminoglycosides as sole antipseudomonal agent (*strong recommendation, very low-quality evidence*)

Clin Infect Dis 2016; 63: e61-e111
Empiric Antibiotic Coverage: MDRO Risk Factors

<table>
<thead>
<tr>
<th>Risk Factors for MDRO VAP</th>
<th>Risk Factor for MDRO HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prior IV antibiotic use within 90 days</td>
<td>• Prior IV antibiotic use within 90 days</td>
</tr>
<tr>
<td>• OR 12.3 (95% CI 6.48-23.35)</td>
<td>• OR 5.17 (95% CI 2.11-12.67)</td>
</tr>
<tr>
<td>• Septic shock at time of VAP</td>
<td></td>
</tr>
<tr>
<td>• OR 2.01 (95% CI 1.12-3.61)</td>
<td></td>
</tr>
<tr>
<td>• ARDS preceding VAP</td>
<td></td>
</tr>
<tr>
<td>• OR 3.1 (95% CI 1.88-5.1)</td>
<td></td>
</tr>
<tr>
<td>• 5 or more days of hospitalization prior to VAP</td>
<td></td>
</tr>
<tr>
<td>• Acute RRT prior to onset of VAP</td>
<td></td>
</tr>
<tr>
<td>• OR 2.5 (95% CI 1.14-5.49)</td>
<td></td>
</tr>
</tbody>
</table>

Clin Infect Dis 2016; 63: e61-e111
Additional HAP Treatment Considerations

- Cover MRSA if: *(weak recommendation, very low-quality evidence)*
 - >20% prevalence of MRSA among S. aureus isolates
 - local resistance patterns are unknown
 - high risk of mortality (need for ventilator support and septic shock)

- Treat *Pseudomonas* with two antibiotics from different classes if: *(weak recommendation, very low-quality evidence)*:
 - structural lung disease (i.e., bronchiectasis, cystic fibrosis)
 - high risk of mortality (need for ventilator support, septic shock)

Clin Infect Dis 2016; 63: e61-e111
Additional VAP Treatment Considerations

• Cover MRSA if: *(weak recommendation, very low-quality evidence)*
 • >10-20% prevalence of MRSA among S. aureus isolates
 • local resistance patterns are unknown

• Treat *Pseudomonas* with two antibiotics from different classes if: *(weak recommendation, low quality evidence):*
 • >10% of Gram-negative isolates are resistant to monotherapy options
Which Antibiotics Should Be Used?

- *Pseudomonas*, MSSA, and gram- coverage for all
 - Anti-pseudomonal \(\beta\)-lactam or levofloxacin
- Vancomycin or linezolid for MRSA
 - consider patient-specific factors (i.e. blood cell count, use of SSRIs, renal function, cost)
- When 2 anti-pseudomonal agents are needed
 - Fluoroquinolone
 - Aminoglycosides (no monotherapy)
 - Polymixins (considered for VAP only)

Clin Infect Dis 2016; 63: e61-e111
<table>
<thead>
<tr>
<th>Broad-Spectrum Antibiotics With MSSA, Gram negative, and Antipseudomonal Activity</th>
<th>Gram-Positive Antibiotics With MRSA Activity</th>
<th>Gram-Negative Antibiotics With Antipseudomonal Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipseudomonal penicillins
• Piperacillin-tazobactam 4.5 g IV q6h</td>
<td>Glycopeptides
• Vancomycin 15 mg/kg IV q8–12h (consider a 25–30 mg/kg loading dose in severe illness)</td>
<td>Fluoroquinolones
• Ciprofloxacin 400 mg IV q8h
• Levofloxacin 750 mg IV q24h</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Antipseudomonal Cephalosporins
• Cefepime 2 g IV q8h
• Ceftazidime 2 g IV q8h</td>
<td>Oxazolidinones
Linezolid 600 mg IV q12h</td>
<td>Aminoglycosides
• Amikacin 15–20 mg/kg IV q24h
• Gentamicin 5–7 mg/kg IV q24h
• Tobramycin 5–7 mg/kg IV q24h</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Antipseudomonal Carbapenems
• Imipenem 500 mg IV q6hd
• Meropenem 1 g IV q8h</td>
<td>Monobactams
• Aztreonam 2 g IV q8h</td>
<td>Polymyxins
• Colistin 5 mg/kg IV loading dose followed by 2.5 mg × (1.5 × CrCl + 30) IV q12h maintenance dose
• Polymyxin B 2.5–3.0 mg/kg/d divided in 2 daily IV doses</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Fluoroquinolones
• Levofloxacin 750 mg IV q24h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Clin Infect Dis 2016; 63: e61-e111
2005 IDSA *Pseudomonas* Double-Coverage

- Previous guideline recommendations of when to cover *Pseudomonas*
 - Antimicrobial therapy in preceding 90 d
 - Current hospitalization of 5 d or more
 - High frequency of antibiotic resistance in the community or in the specific hospital unit
 - Immunosuppressive disease and/or therapy

Should we double-cover *Pseudomonas*?

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of Study</th>
<th># of Patients</th>
<th>Interventions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarez et al</td>
<td>2001</td>
<td>RCT</td>
<td>124 (HAP)</td>
<td>Pip/tazo + amikacin vs ceftazidime + amikacin</td>
<td>No difference in mortality</td>
</tr>
<tr>
<td>Sieger et al</td>
<td>1997</td>
<td>RCT</td>
<td>211 (HAP)</td>
<td>Meropenem + tobramycin vs ceftazidime + tobramycin</td>
<td>No difference in mortality</td>
</tr>
<tr>
<td>Heyland et al</td>
<td>2008</td>
<td>RCT</td>
<td>740 (VAP)</td>
<td>Meropenem + ciprofloxacin vs meropenem alone</td>
<td>No difference in mortality</td>
</tr>
<tr>
<td>Damas et al</td>
<td>2006</td>
<td>RCT</td>
<td>74 (VAP)</td>
<td>Cefepime vs cefepime + levofloxacin or amikacin</td>
<td>No difference in mortality</td>
</tr>
</tbody>
</table>

* Clin Infect Dis 2016; 63: e61-e111
Unit Antibiotics

- Recommended by guidelines to have ICU antibiogram in addition to general hospital antibiogram
- Goal is to target pathogens specific to the ICU and to minimize overtreatment
- Likely to be differences between units in the hospital

Clin Infect Dis 2016; 63: e61-e111
Rochester 2016 ICU Antibiogram

Aerobic Gram-Positive Bacteria (% Susceptible)

<table>
<thead>
<tr>
<th>Microorganism (number tested)</th>
<th>Oxacillin<sup>1</sup></th>
<th>Vanco<sup>2</sup></th>
<th>Secondary Drugs</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Levo<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Floxacin le<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMP/SMX le<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minocycline le<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifampin le<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinda le<sup>0.5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mupirocin le<sup>256</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Daptomycin le<sup>1</sup></td>
<td></td>
</tr>
</tbody>
</table>

- **Staphylococcus aureus (242)**
 - Oxacillin: 68%
 - Vanco: 99%
 - Levo: 69%
 - Floxacin: 97%
 - Rifampin: 95%
 - Clinda: 70%
 - Mupirocin: 99%
 - Daptomycin: 98%

- **Methicillin-Susceptible Staphylococcus aureus (163)**
 - Oxacillin: 100%
 - Vanco: 100%
 - Levo: 90%
 - Floxacin: 99%
 - Rifampin: 100%
 - Clinda: 82%
 - Mupirocin: 100%
 - Daptomycin: 97%

- **Methicillin-Resistant Staphylococcus aureus (78)**
 - Oxacillin: 0%
 - Vanco: 98%
 - Levo: 21%
 - Floxacin: 94%
 - Rifampin: 98%
 - Clinda: 41%
 - Mupirocin: 98%
 - Daptomycin: 94%

- **Staphylococcus coagulase negative (97)**
 - Oxacillin: 42%
 - Vanco: 100%
 - Levo: 61%
 - Floxacin: 71%
 - Rifampin: 98%
 - Clinda: 62%
 - Mupirocin: 97%
 - Daptomycin: 94%

Grey = not reported

Adapted from Mayo Clinic 2016 ICU Antibiogram
Rochester 2016 ICU Antibiogram

Aerobic Gram-Negative Bacteria (% Susceptible)

Microorganism (number tested)	Amp <20	Cefazolin <2	Ceftriaxone <1	Ceftep <2	Aztreon <4	Meropenem <1	Ertapenem <0.5	Amp/Sulf <3/4	Pip/Teicoplanin <16/4	Gent <4	Tobramycin <4	Amikacin <16	Ciproflaxacin <1	Levofloxacin <2	TMP/SMX <20/8	Oral Cephalosporins and Aminopenicillins*	Nitrofurantoin <32	Trimethoprim <64			
*Citrobacter spp (59)	R	93 ≤	98	94	100	100	74	98	94	96	100	94	94	89	87 ≤						
*Enterobacter cloaceae complex (82)	R	R	68 ≤	91	71	97	89	R	78	97	97	100	96	97	96	40 ≤					
*Escherichia coli (196)	50	58	83	85	84	100	98	58	95	89	86	98	65	65	77						
*Escherichia coli urine isolates only (59)	54	61 ≤	84	88	84	100	98	64	98	91	88	100	59	59	77	97 ≤	98 ≤	98 ≤			
*Klebsiella oxytoca (67)	13	89	100	92	100	100	61	92	98	97	100	94	94	94	100 ≤						
*Klebsiella pneumoniae complex (105)	R	71	89	95	92	99	98	69	92	95	95	98	92	94	85	95 ≤	38 ≤				
*Proteus mirabilis (60)	81	6	98	98	98	100	90	91	98	60	63	76	91 ≤	R							
Pseudomonas aeruginosa (125)	R	R	R	84	80 ≤	72 ≤	81 ≤	R	R	82	87	94	96	76	70	R					
*Serratia marcescens (67)	R	R	91	98	94	98	98	R	97	97	95	100	97	97	100	R					
Stenotrophomonas maltophilia (53)	R	R	R	15	R	R	R	R	R	R	R	R	R	R	R	84	99	R			

Grey = not tested; Grey "R" = intrinsic resistance

Adapted from Mayo Clinic 2016 ICU Antibiogram

©2017 MFMER | slide-29
Patient Case #2

- 68 y/o female ICU day 5 for CHF exacerbation requiring mechanical ventilation for 4 days
 - In past 24 hours, patient has developed a fever and leukocytosis
 - Chest X-ray shows new infiltrate in left upper lobe of lung
- No IV antibiotics in the past 90 days
- Labs: CrCl ~65 ml/min, WBC 12.4, no allergies
- Cultures pending
While awaiting culture results, what would be appropriate empiric antibiotic therapy for this patient?

- A: Levofloxacin 500 mg IV daily
- B: Cefepime 2 g IV q8hrs
- C: Piperacillin/tazobactam 4.5 g IV q6hrs + vancomycin 15-20 mg/kg IV q12hrs + levofloxacin 750 mg IV daily
- D: Meropenem 1g IV q8hrs + linezolid 600 mg IV q12hrs
While awaiting culture results, what would be appropriate empiric antibiotic therapy for this patient?

• A: Levofloxacin 500 mg IV daily
• B: Cefepime 2 g IV q8hrs
• C: Piperacillin/tazobactam 4.5 g IV q6hrs + vancomycin 15-20 mg/kg IV q12hrs + levofloxacin 750 mg IV daily
• D: Meropenem 1g IV q8hrs + linezolid 600 mg IV q12hrs
Length of Therapy

• HAP
 • 7 days (strong recommendation, very low-quality evidence)

• VAP
 • 7 days (strong recommendation, moderate-quality evidence)
 • Meta-analysis assessing VAP due to non-glucose-fermenting gram negative rods showed no difference in pneumonia recurrence (OR 1.42, 95% CI 0.66-3.04) or mortality (OR 0.94, 95% CI 0.56-1.59)

• ALWAYS assess the clinical picture

Clin Infect Dis 2016; 63: e61-e111
Conclusion

• The 2016 IDSA HAP/VAP Guidelines address differences in practice settings with significant differences in resistance patterns

• These are guidelines, not laws!
 • Clinical judgment should always be used

• Utilize antibiotics judiciously and carefully
 • Improve empiric treatment definitions and de-escalate when appropriate

• Shorter duration of therapy recommended
Questions & Discussion