

Let's Get Ready to CAR-T: Management of Immunotherapy Toxicities

Victoria Milano, PharmD

Learning Objectives

- Describe the mechanism of immune checkpoint inhibitor and CAR T-cell therapy toxicities
- Review the most common types of toxicities and risk factors associated with immunotherapy treatment
- Discuss literature and guideline recommendations for the management of immunotherapy toxicities

Timeline

Coley's **Toxins**

Invention of monoclonal antibodies

Approved Indications

- **Primary mediastinal large B-cell** lymphoma
- Acute lymphoblastic leukemia
- **Diffuse large B-cell lymphoma**

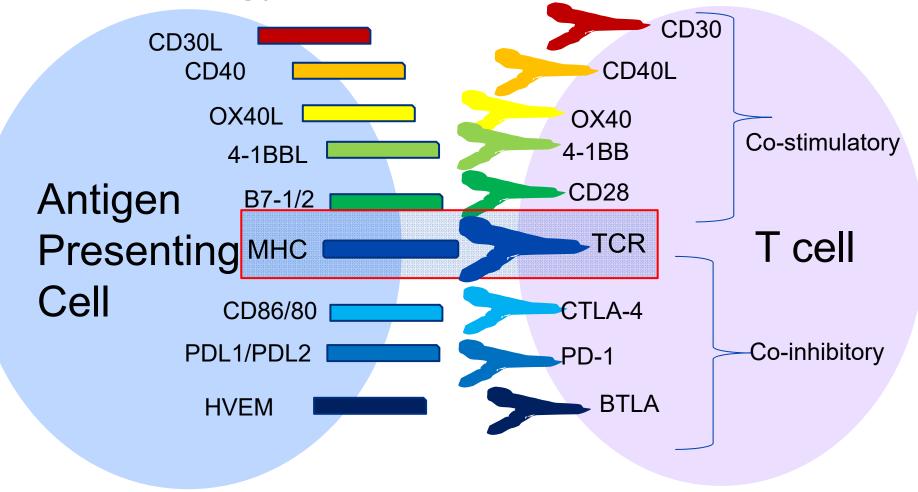
CAR T cells developed

Radiation Therapy

Rituximab approved

Ipilimumab Some approved Indications

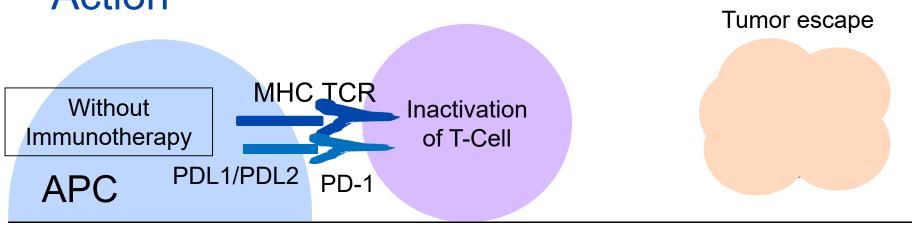
- Malignant melanoma
- Head and neck cancer
- Hepatocellular carcinoma
- Renal cell carcinoma
- Cervical cancer
- Non-small cell lung cancer
- Hodgkin's lymphoma



What is Immunotherapy?

- Uses an individual's immune system to fight cancer
 - Monoclonal antibodies
 - Cancer vaccines
 - Immune checkpoint inhibitors
 - T-cell transfer therapy

Immunology


CTLA-4 Inhibitors Mechanism of Action

Ipilimumab

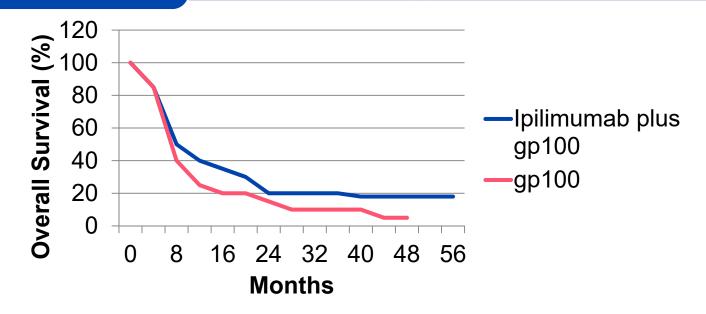
PD-1 and PD-L1 Inhibitors Mechanism of Action

PD-1 inhibitors

- Nivolumab
- Pembrolizumab
- Cemiplimab

PD-L1 Inhibitors

- Atezolizumab
- Avelumab
- Durvalumab


Ipilimumab Efficacy Trial

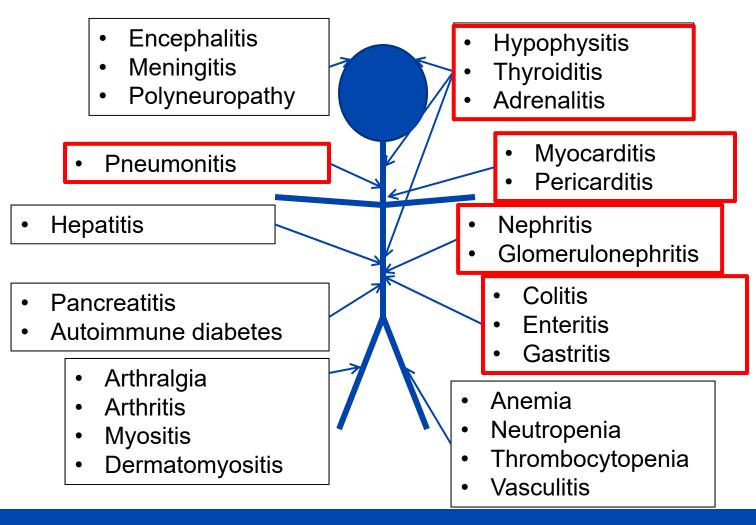
Population

Unresectable stage III or IV melanoma

Intervention

- lpilimumab plus gp100
- gp100 alone

Survival Rates



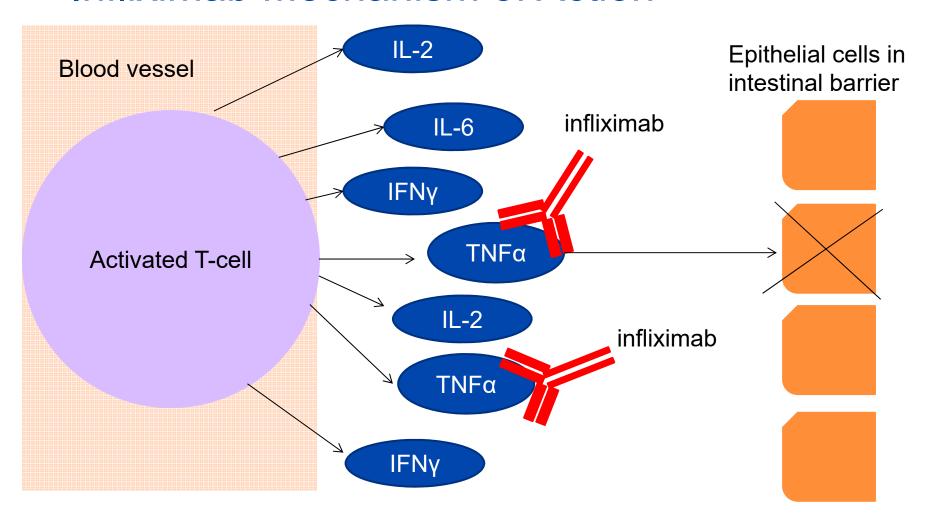
Immunotherapy Toxicities

Class of agent	Examples of drugs	Type of toxicity	Mechanism of toxicity
Immune checkpoint blockade	Anti-CTLA-4, anti-PD-1, anti-PD-L1	Immune related adverse events	Auto-immune like
CAR-T cells	Tisagenlecleucel, axicabtagene ciloleucel	Cytokine release syndromes (CRS), neurologic	Cytokines (IL-6 and interferon-gamma), T-cell migration to the CNS

Types of Toxicities

Immune Checkpoint Inhibitor Adverse Event Management

- Grade 1: symptomatic treatment
- Grade 2: suspend immunotherapy and start oral corticosteroids
- Grade 3-4: IV corticosteroids, consult specialist in organ affected, alternative immunosuppressive therapy if corticosteroids not sufficient
- Exceptions: treat endocrinopathies with replacement therapy



Gastrointestinal

- Clinical marker: increase in stool frequency
- Onset time: 5-10 weeks after initiation
- Most likely agents: anti-CTLA-4, combination
- Treatment:
 - Prednisone or methylprednisolone 1-2 mg/kg/day
 - Infliximab 5-10 mg/kg if symptoms persist
 - Vedolizumab may be considered

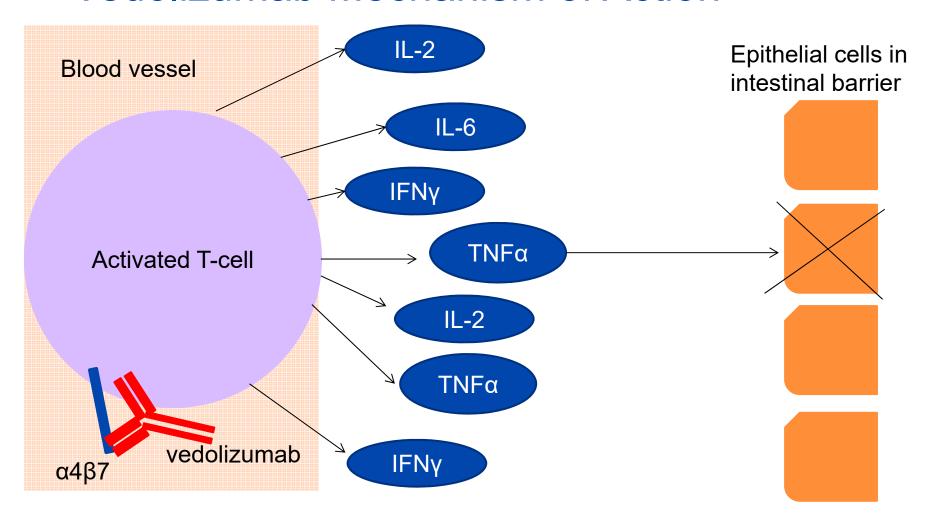
Infliximab Mechanism of Action

Infliximab Case Series

Population

 Five patients with steroid dependent or partially-refractory enterocolitis

Intervention


 Infliximab 5 mg/kg every 2 weeks for 1-2 doses

Outcome

 Resolution of symptoms within 2-3 days in all patients

Vedolizumab Mechanism of Action

Vedolizumab Case Series

Population

- Seven patients with ipilimumab or nivolumab induced enterocolitis
- Steroid-dependent and/or partially refractory

Intervention

Vedolizumab infusion 300 mg at 0, 2 and 6 weeks

Outcome

 6/7 patients achieved steroid-free enterocolitis remission at a median of 56 days

Pulmonary

- Clinical marker: increase in oxygen requirements and radiographic evidence
- Onset time: median ~3 months (2-24 months)
- Most likely agents: PD-1, combination therapy
- Treatment:
 - Methylprednisolone 1-2 mg/kg/day
 - Infliximab 5 mg/kg
 - Mycophenolate mofetil IV 1 g BID
 - IVIG for 5 days
 - Cyclophosphamide

Renal

- Clinical marker: laboratory markers (creatinine)
- Onset time: ~90d after initiation (21-245 days)
- Most likely agents: combination
- Treatment:
 - Prednisone 0.5-2 mg/kg/day
 - Mycophenolate

Endocrine

- Clinical marker: signs/symptoms, laboratory markers (TSH, free T4, ACTH, ketosis in urine)
- Onset time: 4-12 weeks
- Most likely agents: ipilimumab (hypophysitis), anti-PD1/PDL1 (diabetes, thyroiditis)
- Treatment:
 - Hormone replacement
 - Steroids if life-threatening, critical illness

Cardiovascular

- Clinical marker: cardiac biomarkers, ECG, echocardiogram
- Onset time: 10 weeks (2-32 weeks)
- Most likely agents: all agents
- Treatment:
 - Hold ICPi and permanently discontinue after grade 1
 - Methylprednisolone 1-2 mg/kg/day up to 1 g
 - +/- mycophenolate, infliximab, IVIG

Higher dose steroids

Population

- 35 patients from an 8-center institutional registry (November 2013-July 2017) with ICPi-associated myocarditis
- 46% (16/35) developed MACE

	No MACE (n=19)	MACE (N=16)	P Value
Initial steroid dose, mg	160 (0-1,000)	72.5 (0-1,000)	0.055
Initial steroid dose/body weight (mg/kg)	2.06 (0-20.20)	0.84 (0-14.0)	0.041
Time from admission to steroid administration, h	18.3 ± 12.8	27.2 ± 17.5	0.12

Poll-Everywhere Question

- Which of the following immune-related adverse events should NOT be treated with steroids?
 - Adrenal insufficiency
 - Pneumonitis
 - Hyperthyroidism
 - Myocarditis

Summary

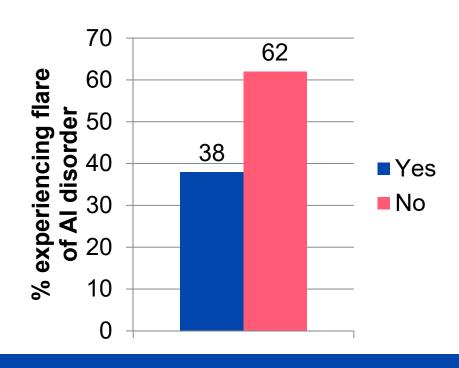
- Prednisone or methylprednisolone 1 to 2 mg/kg/day
- Rule-out underlying infection
- Should be given prophylaxis
- Taper progressively over a period of at least 1 month

Prophylaxis

PCP prophylaxis and consider prophylactic fluconazole for anyone on long-term immunosuppressive drugs

Aspergillus fumigatus pneumonia

Risk Factors for Checkpoint Inhibitor Toxicities


Baseline autoimmune diseases

Autoimmune Disorders

Patient population	52 patients w/ advanced melanoma and preexisting autoimmune disorders
Intervention	Anti-PD-1 antibodies
Outcome	Flare of autoimmune disorder

Baseline characteristics				
Activity of Al disorder at PD1 start				
Not clinically active	37 (71%)			
Clinically active	15 (29%)			
Treatment of Al disorder at PD1 start				
No immunosuppression	32 (62%)			
Corticosteroids	9 (17%)			
Steroid-sparing agent	5 (10%)			
Steroids and SSAs	5 (10%)			

Risk Factors for Checkpoint Inhibitor Toxicities

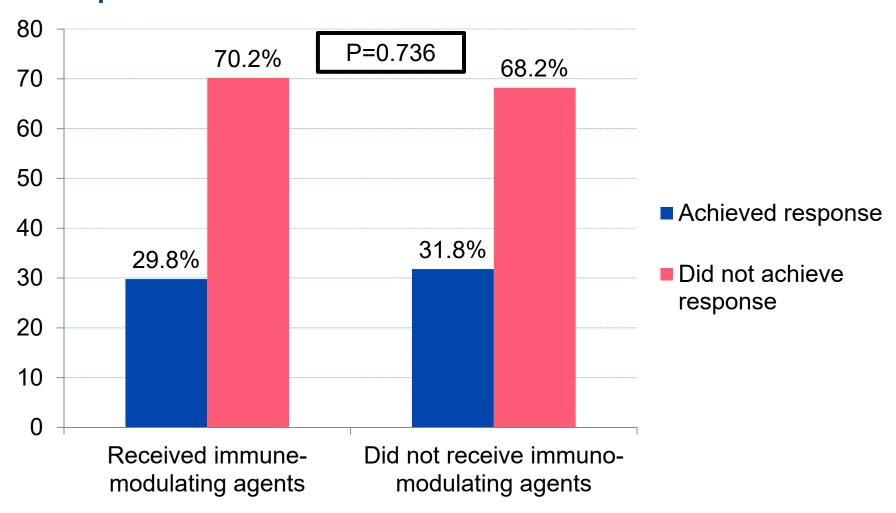
- Baseline autoimmune diseases
- Chronic organ dysfunction
 - Renal failure/dialysis
 - Respiratory failure
 - Heart failure
- Chronic viral infection
 - HIV
 - Viral hepatitis
- Organ transplant

Does treatment with immune-modulating agents affect efficacy of ICPi?

Retrospective analysis of 576 patients with advanced melanoma

Received at least one dose of nivolumab

N=114 N=462


Received systemic immune-modulating agents

Did not receive systemic immune-modulating agents

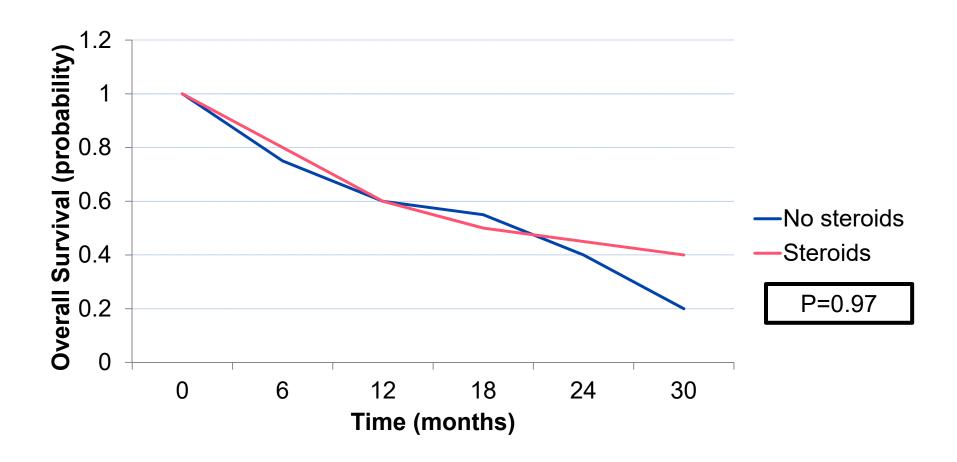
Outcome: impact of systemic immune-modulating agents on tumor response rate

Immune-modulating agents affect on tumor response rate

Does treatment with systemic corticosteroids affect survival?

Retrospective analysis of 298 patients with melanoma

Received at least one dose of ipilimumab


N = 103N = 195

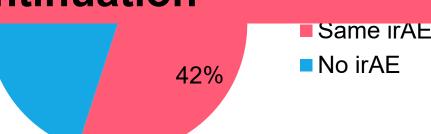
Received systemic corticosteroids for an irAE Did not receive systemic corticosteroids

Outcome: impact of systemic immunosuppression on overall survival

Immunosuppression affect on overall survival

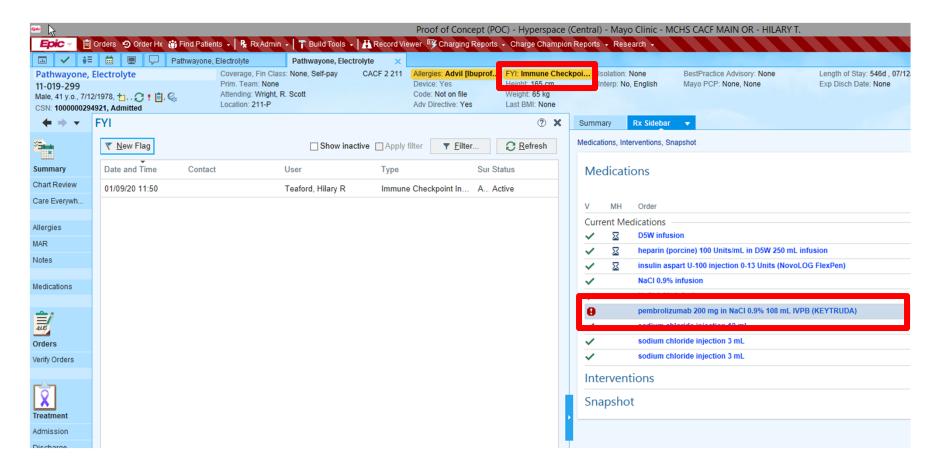
Resuming ICPi

Patients


Cohort study of 93 patients with ICPi irAE

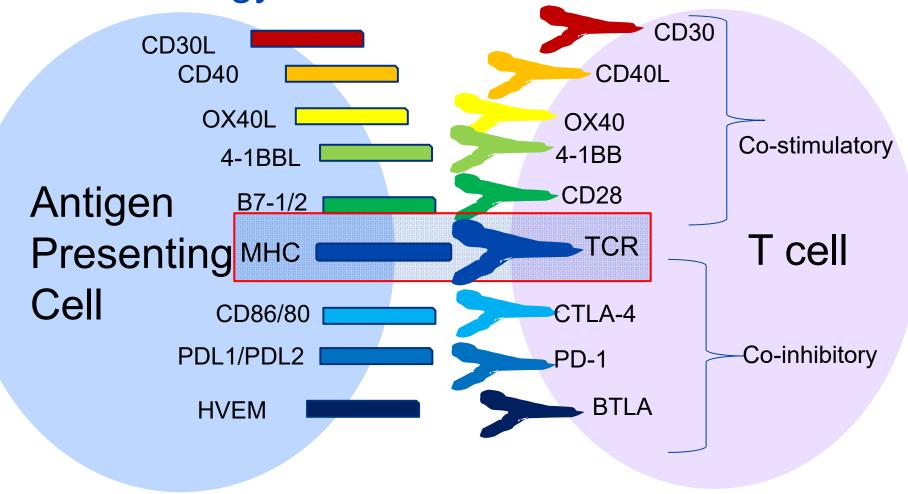
Intervention (1997)

C


 Consider rechallenging when symptoms/labs improve to grade 1 or less

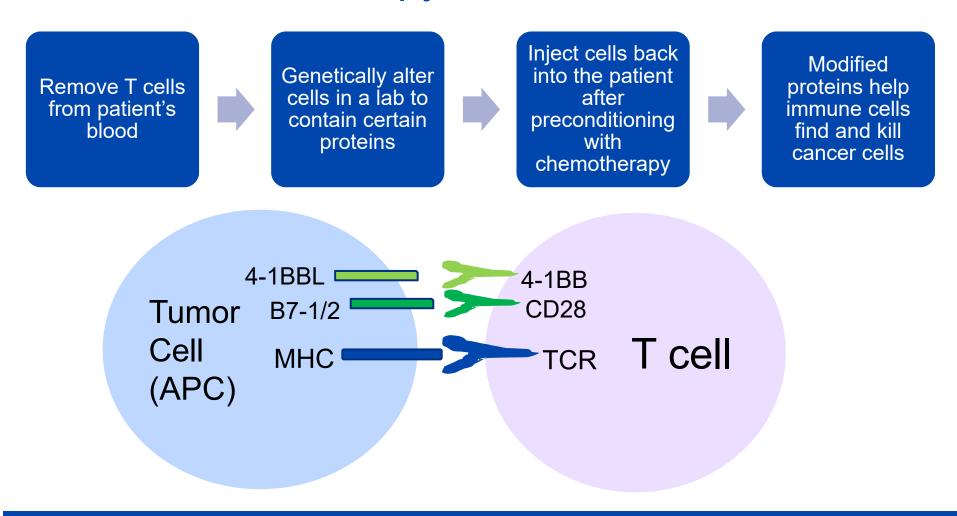
Grade 4: consider permanent discontinuation

Immune Checkpoint Inhibitor Warning in Epic



Poll Everywhere Question

- Which of the following is a risk factor for checkpoint inhibitor toxicity?
 - Baseline autoimmune disease
 - Acute organ failure
 - Increased age
 - Poor performance status



Immunology

CAR T-cell Therapy

CAR T-cell Toxicities

- Cytokine release syndrome
- Neurotoxicity

Cytokine Release Syndrome Pathophysiology

- Activation and expansion of the CAR T-cells and lysis of normal and tumor cells
- Release of several cytokines
 - Interferon-gamma
 - Tumor-necrosis factor alpha
- Triggers the activation of monocytes and macrophages with enhanced tumoricidal capacity
- Activated macrophages secrete high levels of proinflammatory cytokines (IL-6, IL-1, IL-10) and inducible nitric oxide synthase (iNOS)

Cytokine Release Syndrome

• **Incidence**: 57-93%

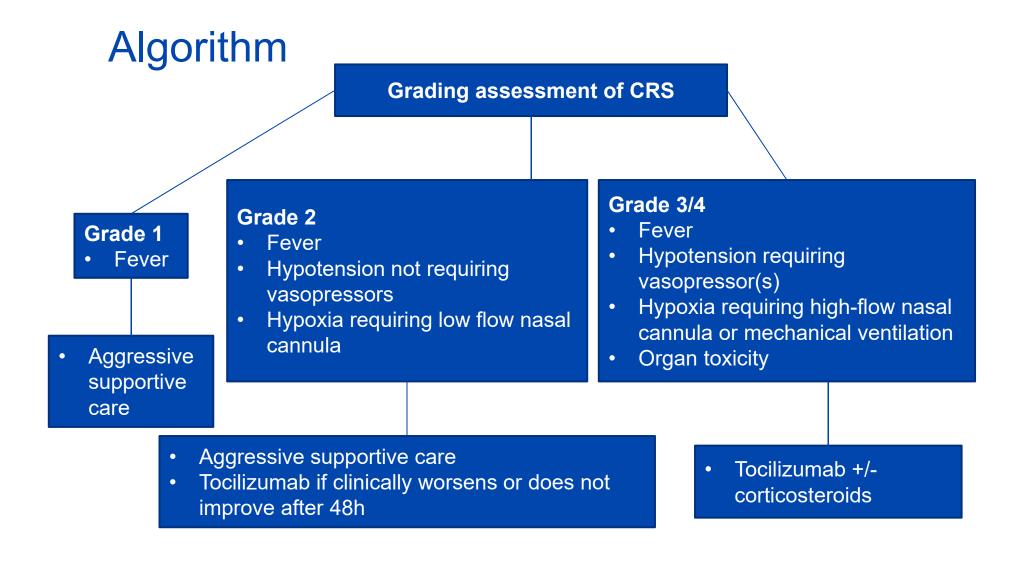
Timing: ~2-3 days (1-12d) up to 3 weeks

Risk factors

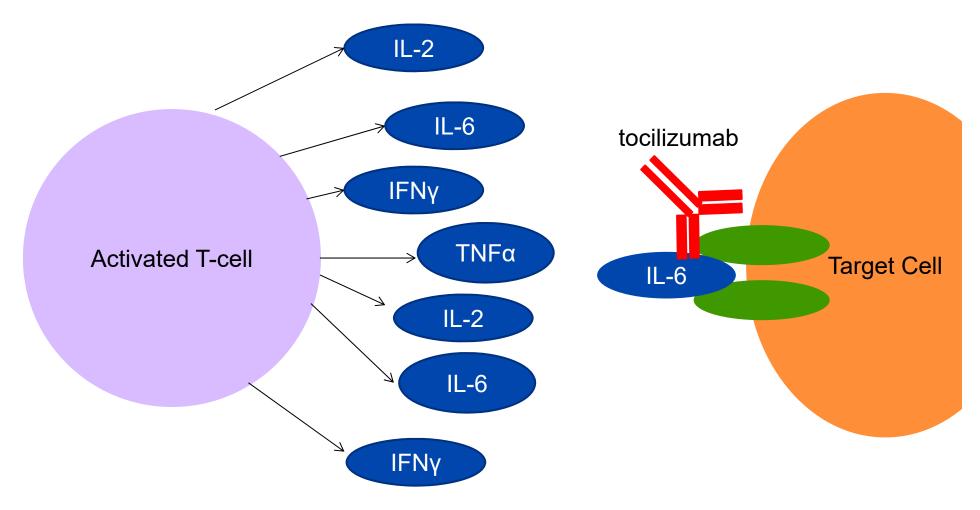
- Higher burden malignancy
- Higher CAR T-cell doses

Signs/symptoms

- Prodromal: Flu-like syndrome with fever, fatigue, headache, arthralgia, myalgia, and malaise
- Pyrexia, GI symptoms, hemodynamic instability, organ dysfunction


American Society for Transplantation and Cellular Therapy (ASTCT) Consensus for Diagnosis of Cytokine Release Syndrome

- Grade 1: fever ≥ 38°C
- Grade 2: hypotension not requiring vasopressor and/or hypoxia requiring ≤6 L/min O2
- Grade 3: hypotension requiring one vasopressor with or without vasopressin and/or hypoxia requiring >6 L/min O2 (nasal cannula, facemask, or nonrebreather mask)
- Grade 4: hypotension requiring multiple vasopressors (excluding vasopressin) and/or hypoxia requiring positive pressure (e.g. CPAP, BiPAP, intubation and mechanical ventilation)



Current Management

- Standard supportive therapies
 - Consider antibiotics
- Tocilizumab
 - 8 mg/kg IV every 8 h up to 3 doses
- Corticosteroids
 - Dexamethasone 10 mg PO/IV
 - Methylprednisolone 1 gram IV daily

Tocilizumab Mechanism of Action

Tocilizumab

Retrospective analysis of pooled data from prospective clinical trials of CAR T-cell therapies

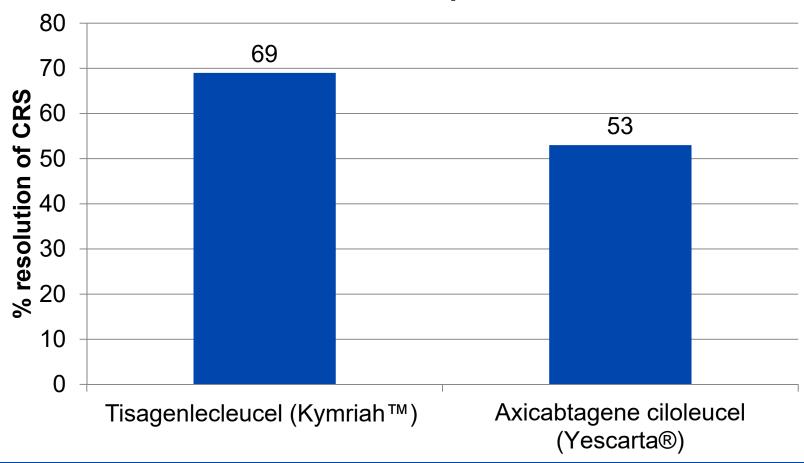
Patients with severe CRS
IV tocilizumab 8 mg/kg (12 mg/kg if <30 kg)
Nine studies total

N=45 N=15

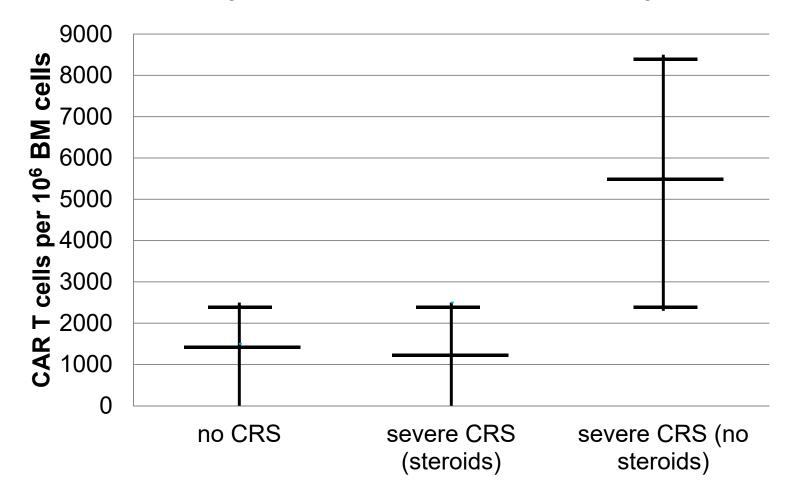
Tisagenlecleucel (Kymriah™)

Axicabtagene ciloleucel (Yescarta®)

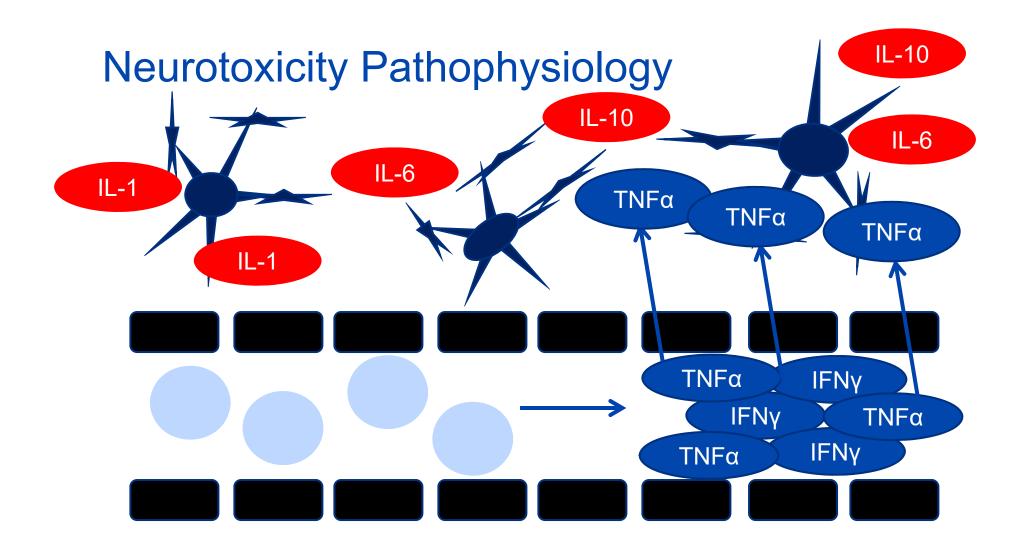
Primary outcome = characterize resolution of CRS


Baseline Characteristics

	Tisagenlecleucel (Kymriah™) (n=45)	Axicabtagene ciloleucel (Yescarta®) (n=15)	
Underlying malignancy			
ALL	45 (100%)	2 (13.3%)	
DLBCL	0	12 (80.0%)	
PMBCL	0	1 (6.7%)	
Baseline CRS grade			
Grade 3	10 (22.2%)	15 (93.3%)	
Grade 4	35 (77.8%)	1 (6.7%)	
CRS duration prior to tocilizumab			
0-4 days	23 (51.1%)	12 (80.0%)	
>4 days	22 (48.9%)	3 (20.0%)	
Number of tocilizumab doses daily			
Single daily dose	43 (95.6%)	10 (66.7%)	
Multiple doses per day	2 (4.4%)	5 (33.3%)	


Resolution of CRS by Day 14

Achieved response



Does treatment with immunosuppression affect efficacy of CAR T-cell therapy?

Neurotoxicity

• Incidence: 0-87%

Median time of onset: 4-6 days

Often occurs concurrently with CRS

Signs/symptoms

 Headache, pain, memory loss, dizziness, alterations in mental status, movement disorders, impaired speech, seizures

Diagnosis

Task		Maximum Points (total=10)
Orientation	Name year, month, city, hospital	4
Naming	Point to 3 objects and ask the subject to name them	3
Following commands	Example, show me 2 fingers; OR close your eyes; OR stick out your tongue	1
Writing	Ask the subject to write a complete sentence. Examine the writing for legibility. Example: "it is warm today"	1
Attention	Count backwards from 100 to 10s	1

Neurotoxicity Management

- Corticosteroids
 - Dexamethasone 10 mg IV every 6 h until grade 1, then taper rapidly over 3 days
- Tocilizumab
 - Not helpful and may make it worse
 - Does not cross the blood brain barrier

CAR-T Best Practice Advisory in Epic

PATIENT HAS RECEIVED CAR-T PRODUCT INFUSION Recommendation This patient has received CAR-T product infusion. The risk for Cytokine Release Syndrome (CRS) and neurotoxicity is high. It can be life threatening if not treated appropriately. NO CORTICOSTEROIDS except for physiologic replacement of hydrocortisone. CAR-T therapy precludes the use of corticosteroids EXCEPT in the case of life threatening emergencies (e.g., resistant Cytokine Release Syndrome). Please contact CAR-T team if available, if not available contact the BMT service.

Poll-Everywhere Question

- 55-year-old patient presenting with neurotoxicity after receiving CAR-T cell infusion 5 days prior.
 What should be started first?
 - Tocilizumab
 - Dexamethasone
 - Hydrocortisone
 - Infliximab

Summary

- Immune related adverse events are common from checkpoint inhibitors
 - Treat with prednisone or methylprednisolone 1-2 mg/kg for more severe adverse events with slow taper to prevent recurrence
- Cytokine release syndrome and neurotoxicity are adverse events from CAR T-cell therapy
 - Treat severe cytokine release syndrome with tocilizumab +/- corticosteroids
 - Treat severe neurotoxicity with corticosteroids

