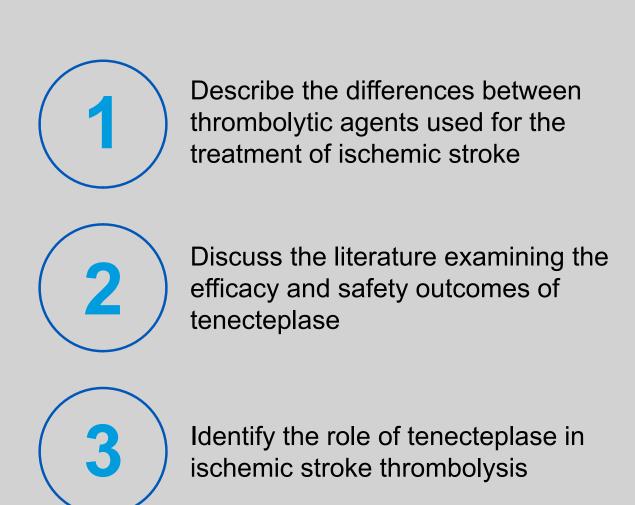


Are You a 10/10?


Tenecteplase in Ischemic Stroke

Cassie Schmitt, PharmD

Tuesday, December 15, 2020 Mayo Clinic Pharmacy Grand Rounds

LEARNING OBJECTIVES

Stroke Epidemiology

2018 CDC Stroke Facts

Incidence

1 in 6 deaths from cardiovascular disease is due to stroke.

Frequency

Someone has a stroke every 40 minutes in the United States.

Stroke Classification

87% of strokes are ischemic.

Morbidity

Stroke is the leading cause of serious, long-term disability.

Stroke History

Landmark Trials

alteplase studies

tenecteplase studies

other milestones

NINDS 1995

Initial alteplase study

ECASS III 1998

4.5 hour time window

Aust. TNK 2012
Phase 2 study TNK
dose finding study

FDA Approval 1996

Based on NINDS trial

TNK-S2B 2010 TNK dose finding study

Stroke History

Landmark Trials

alteplase studies

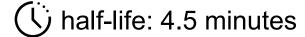
tenecteplase studies

other milestones

MR CLEAN 2015

Thrombectomy becomes standard of care

Extend IA TNK
Part 1 & 2
TNK before
thrombectomy


NOR-TEST 2017
Phase 3 study with reperfusion outcomes

2019 Guidelines Includes TNK as a thrombolytic option

Thrombolytic Agents

Alteplase

Second generation

Relatively fibrin specific

Rapidly inactivate by PAI-1

FDA approved for AIS, AMI, PE

\$ Cost \$\$

Tenecteplase

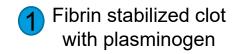
Third generation

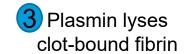
(i) half-life: 115 minutes

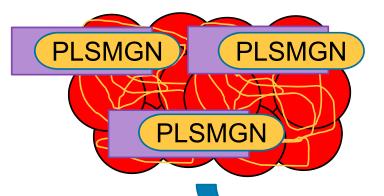
IV bolus

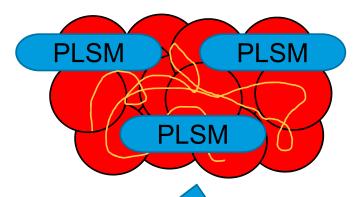
0 15-fold fibrin specificity

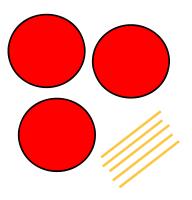
₹ 80x resistance to PAI-1

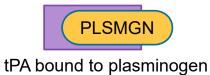

FDA approved for AMI


\$ Cost \$


AIS (acute ischemic stroke), AMI (acute myocardial infarction), PE (pulmonary embolism) PAI-1 (plasminogen activator inhibitor-1)


Mechanism of Action


Thrombolysis



Fibrin degradation products

Plasminogen is converted to plasmin by tissue plasminogen activator

Neurological Outcomes

NIHSS Score

- Score from 0 to 42
 - Mild ≤8
 - Moderate 9-15
 - Severe ≥16
- Changes in score in 24 hours

Reperfusion

- Change in size of infarct
- Restoration of blood flow

Modified Rankin Scale

- **0** No neurologic deficit
- 1 no significant disability
- 2 slight disability
- 3 moderate disability
- 4 moderately severe disability
- **5** severe disability
- 6 death

Poll Everywhere Question #1

- Tenecteplase differs from alteplase in which of the following properties?
 - Greater resistance to PAI-1
 - Decreased fibrin specificity
 - Shorter half-life
 - Increased cost

2. Discuss the literature examining the efficacy and safety of tenecteplase

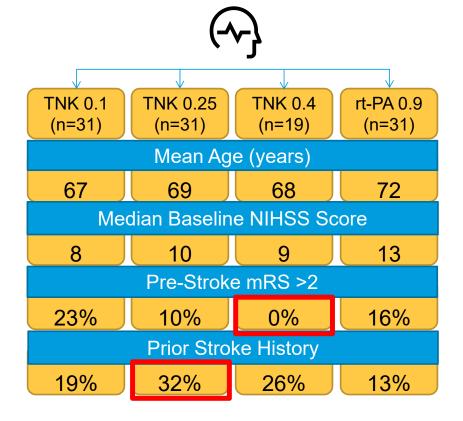
TNK-S2B, Australian TNK, ATTEST, NORTEST, and EXTEND IA TNK trials

TNK-S2B Trial

Stroke, April 2010

Trial Design

- Phase 2, multicenter, randomized, double-blind
- Tenecteplase dose optimization

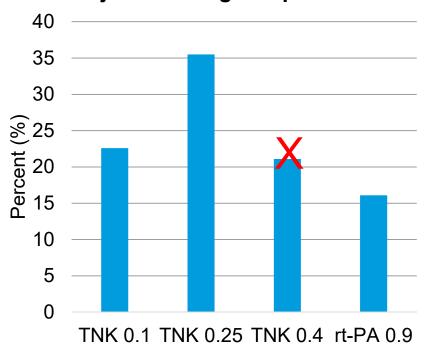

Inclusion Criteria

- Minimum NIHSS Score of 1
- Within 3 hours of symptom onset

Primary Outcome

 Major Neurologic Improvement (MNI) + symptomatic ICH

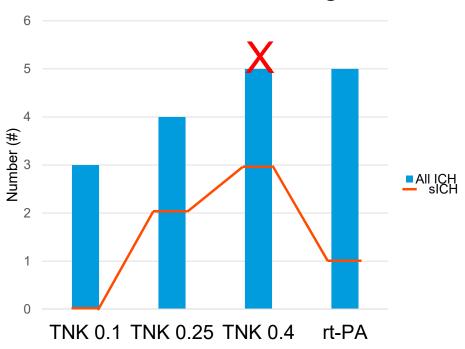
Baseline Patient Characteristics



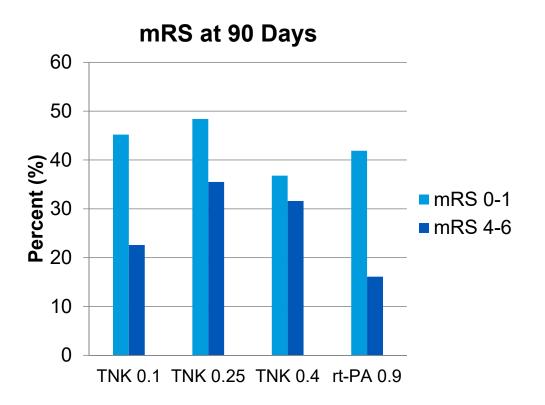
Stroke. 2010;41(4):707-711.

TNK-S2B Efficacy Outcomes

Primary


Major Neurologic Improvement

sICH (symptomatic intracerebral hemorrhage)


Primary

Intracerebral Hemorrhages

Stroke. 2010;41(4):707-711.

TNK-S2B Conclusions

Conclusions

- sICH greater with TNK 0.4 mg/kg
- Trial terminated early
- Unable to determine superior dose
- TNK 0.25 mg/kg not inferior to rt-PA

 \downarrow

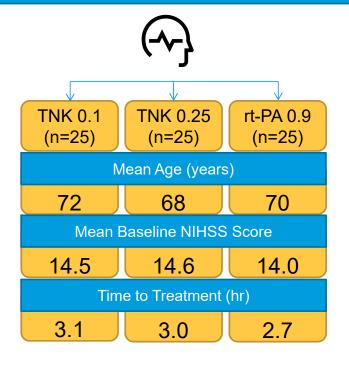
What is the optimal dose of tenecteplase?

Australian TNK Trial

NEJM, March 2012

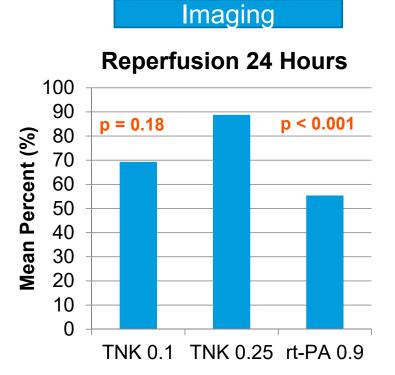
Trial Design

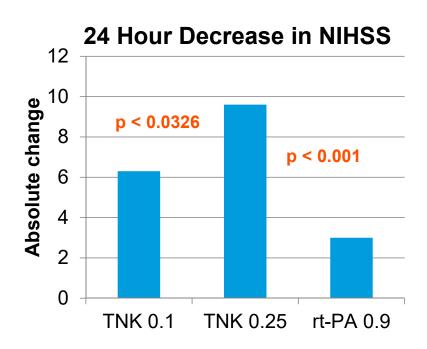
 Phase 2, randomized, open-label, blinded endpoint


Inclusion Criteria

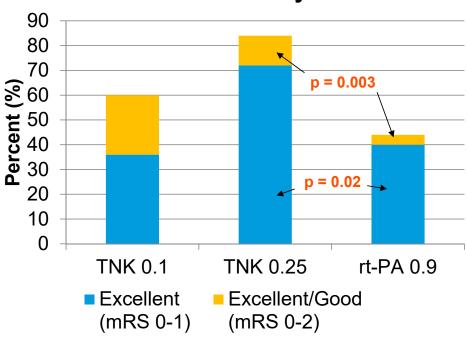
- Within 6 hours of stroke onset
- First stroke, NIHSS >4
- Baseline mRS score <2
- CT perfusion imaging

Co-primary Outcomes (at 24 hours)


- % reperfusion
- Improvement in NIHSS


Baseline Patient Characteristics

Australian TNK Primary Efficacy Outcomes



Clinical

Australian TNK Secondary Outcomes

Clinical

mRS at 90 Days

Safety

	TNK (n=50)	rt-PA (n=25)	P Value
sICH no. (%)	2 (4%)	3 (12%)	0.33
mRS 5-6 no. (%)	5 (10%)	7 (28%)	0.09
Death no. (%)	4 (8%)	3 (13%)	0.33

TNK 0.1 vs. rt-PA not statistically significant

N Engl J Med. 2012;366:1099-1107

Australian TNK Conclusions

Strengths

- Imaging and clinical outcomes significant
- Primary and secondary outcomes correlate
- Dose-response in TNK

Limitations

Limited external validity

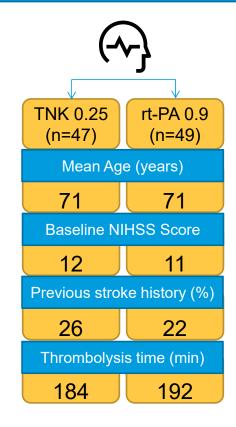
Tenecteplase 0.25 had the greatest rate of reperfusion and improvement in NIHSS score at 24 hours.

Is this outcome reproducible in a more general population?

N Engl J Med. 2012;366:1099-1107

Poll Everywhere Question #2

- What is the primary safety outcome reported in studies for thrombolysis in acute ischemic stroke?
 - Hypertension
 - Seizure
 - Hemorrhagic conversion
 - Thromboembolism


ATTEST Trial

Lancet Neurology, April 2015

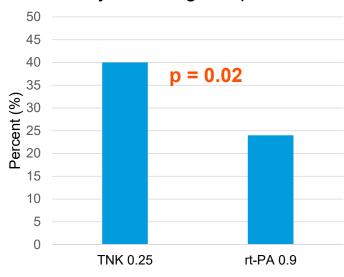
Trial Design

- Single center, phase 2, prospective, randomized, blinded endpoints
- Inclusion Criteria
 - NIHSS > 0
 - Onset within 4.5 hours
 - Included previous history of stroke
- Primary Outcome (24-48 Hours)
 - % penumbra salvaged

Baseline Patient Characteristics

Lancet Neurol. 2015; 14:368-376

ATTEST Efficacy Outcomes

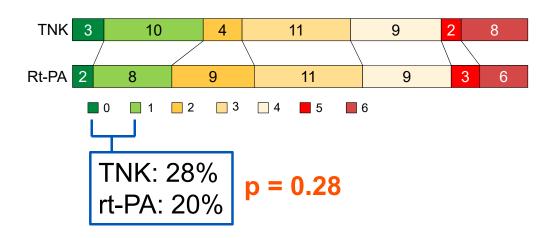

Imaging

At 24-48 hours	TNK 0.25 (n=47)	rt-PA 0.9 (n=49)	P Value
% Penumbra Salvaged	68%	68%	0.81
% Successful Recanalization*	66% (21/32)	74% (26/35)	0.38

*as determined by the Thombolysis in Myocardial Infarction (TIMI) score of 2b-3

Clinical

Early Neurologic Improvement



Lancet Neurol. 2015; 14:368-376

ATTEST Secondary Outcomes

Clinical

Distribution of mRS at 90 days

Safety

	TNK (n=47)	rt-PA (n=49)	P value
sICH	3 (6%)	4 (8%)	0.59
Any ICH	8 (15%)	14 (27%)	0.09
90 day mortality	8 (17%)	6 (12%)	0.51

ATTEST Conclusions

Strengths

- Measured short-term outcomes
- Greater external validity

Limitations

- Baseline characteristics not matched
- Small sample size

Efficacy and safety outcomes were similar between TNK and rt-PA.

What about TNK as bridging therapy to thrombectomy?

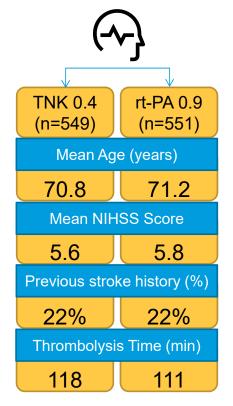
Lancet Neurol. 2015; 14:368-376

NOR-TEST Trial

Lancet Neurology, October 2017

Trial Design

- Phase 3, multicenter, prospective, randomized, open-label, blinded endpoint
- Thrombolysis ± thrombectomy


Inclusion Criteria

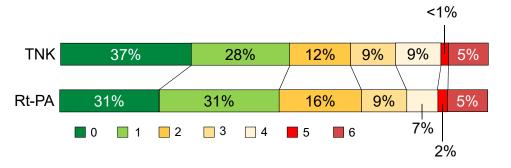
- NIHSS > 0
- Onset symptoms within 4.5 hours
- Included prior strokes

Primary Outcome

mRS 0-1 at 90 days

Baseline Patient Characteristics

Lancet Neurol. 2017;16:781-788 N Engl J Med 2015; 372: 11–20.

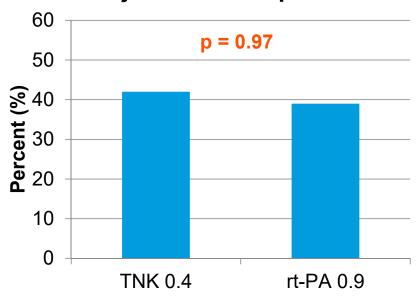

NOR-TEST Outcomes

Primary

mRS 0-1 100 90 p = 0.5280 70 Percent (%) 60 50 40 30 20 10 0 **TNK 0.4** rt-PA 0.9 ■3 months Baseline

Secondary

Distribution of mRS at 90 Days



Lancet Neurol. 2017;16:781-788

NOR-TEST Outcomes

Secondary

Major Clinical Improvement

Safety

	TNK 0.4 (n=549)	rt-PA 0.9 (n=551)	P values
sICH	15 (3%)	13 (2%)	0.83
Any ICH	47 (9%)	50 (9%)	0.82
Death	29 (5%)	26 (5%)	0.68

ICH at 24-48 hours, death at 3 months,

NOR-TEST Conclusions

Strengths

- First phase 3 clinical trial
- Larger sample size

Limitations

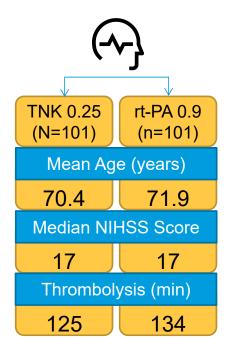
- Mild strokes & stroke mimics
- Unknown distribution of thrombectomy

Tenecteplase had similar safety and efficacy outcomes compared to alteplase in minor strokes.

What about TNK in more severe strokes?

EXTEND-IA TNK

NEJM, April 2018


Trial Design

- Phase 3, multicenter, prospective, randomized, open-label, blinded study
- Thrombolysis + thrombectomy

Inclusion Criteria

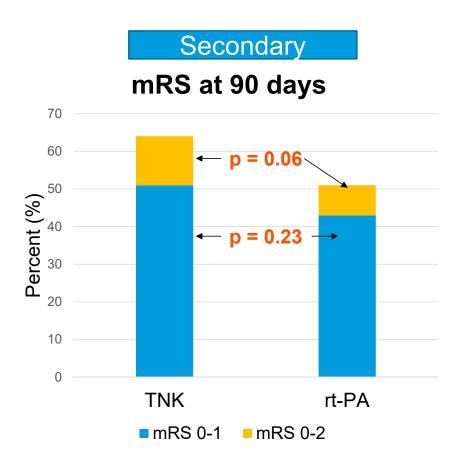
- NIHSS >0
- Onset within 4.5 hours
- Large vessel occlusion
- Primary Outcome (~1 hour)
 - Reperfusion

Baseline Patient Characteristics

EXTEND-IA TNK Primary Outcome

Primary

Reperfusion at 1 hour


Reperfusion

- Return of blood flow >50%
 measured by the TICI score OR
- 2. Lack of a retrievable thrombus

TICI = treatment in cerebral ischemia

N Engl J Med. 2018;378:1573-1582 Lancet 2016; 387: 1723-31

EXTEND-IA TNK Secondary Outcomes

Safety

	TNK	rt-PA	P values
sICH	1 (1%)	1 (1%)	0.99
Death	10 (10%)	18 (18%)	0.08

EXTEND-IA TNK Conclusions

Strengths

- Baseline characteristics balanced
- Reperfusion before thrombectomy

Limitations

Imaging criteria later removed

Higher rates of reperfusion occurred with 0.25 mg/kg tenecteplase over 0.9 mg/kg alteplase.

Does 0.4 mg/kg TNK have higher reperfusion rates before thrombectomy?

EXTEND-IA TNK part 2: showed no difference in rates of reperfusion with TNK 0.25 vs. 0.4

Additional Trials in Progress

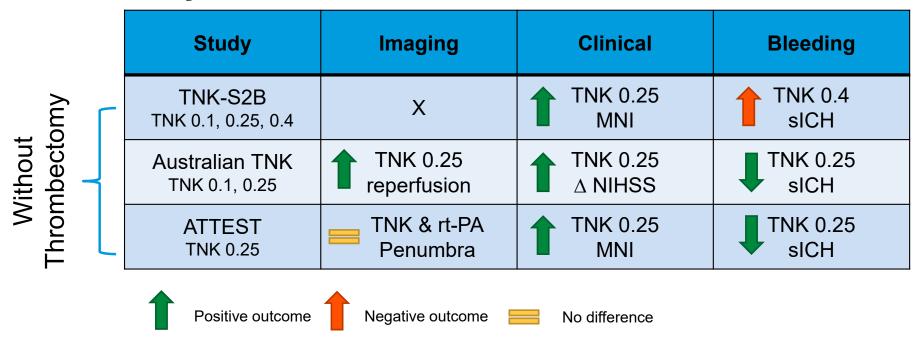
ATTEST2

TNK 0.25 vs. rt-PA without thrombectomy

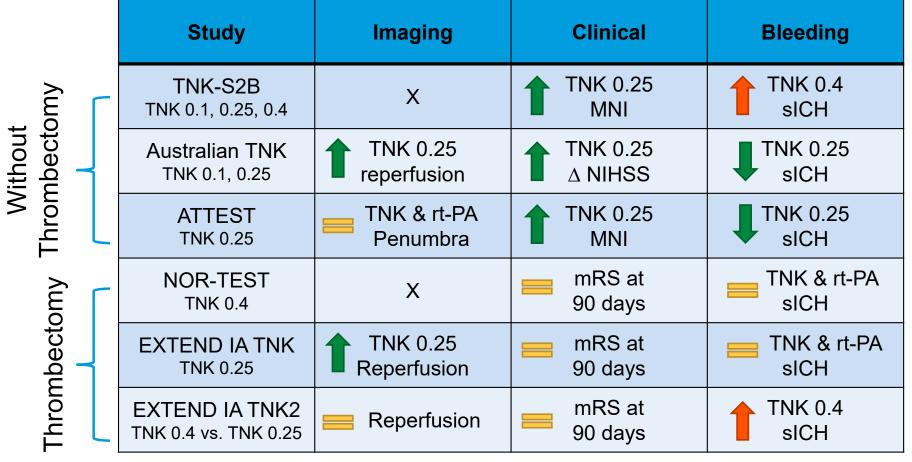
TNK 0.4 vs. rt-PA with thrombectomy

NOR-TEST2

TASTEa


TNK 0.25 vs. rt-PA in ambulance

TNK 0.25 vs. rt-PA in wakeup stroke


TWIST

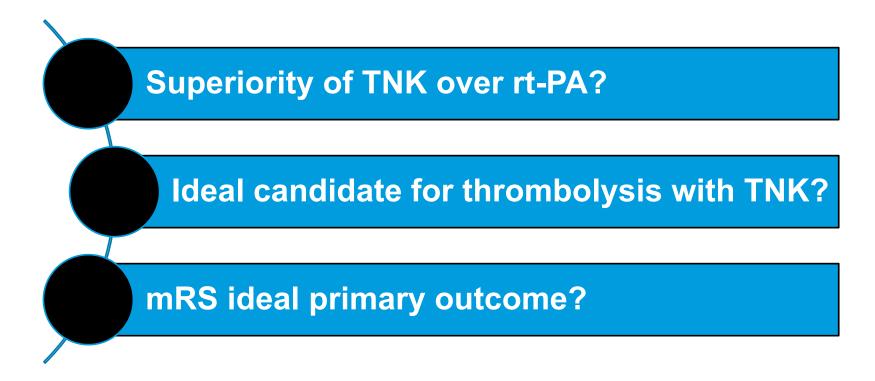
3. Identify the role of tenecteplase in ischemic stroke thrombolysis

Summary of Outcomes

Summary of Outcomes

MNI (major neurologic improvement), ICH (intracerebral hemorrhage) *each study included alteplase 0.9 mg/kg as a comparator arm

Poll Everywhere Question #3


- JB is a 75 YOM with a last known normal of 3 hours ago.
 CT imaging confirms he is a candidate for thrombolysis.
 Which regimen would you recommend?
 - Alteplase 0.9 mg/kg IVP
 - Alteplase 0.9 mg/kg (10% IVP + 90% IVPB)
 - Tenecteplase 0.4 mg/kg IVP
 - Tenecteplase 0.25 mg/kg IVP

Final Recommendations

- Tenecteplase has demonstrated efficacy and safety in acute ischemic stroke compared to alteplase
- Tenecteplase should replace alteplase as the standard of therapy for acute ischemic stroke
- Dosing of 0.25 mg/kg TNK (max: 25 mg) should be utilized regardless of plans for thrombectomy

Mayo Clinic will begin utilizing Tenecteplase 0.25 mg/kg for acute ischemic stroke in 2021.

Remaining Questions

QUESTIONS& ANSWERS

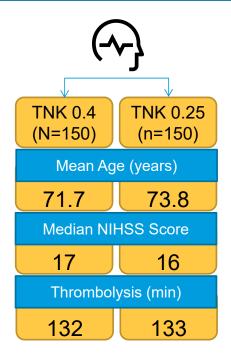
Cassie Schmitt, PharmD PGY1 Pharmacy Resident schmitt.cassandra@mayo.edu

EXTEND-IA TNK Part 2

JAMA, February 2020

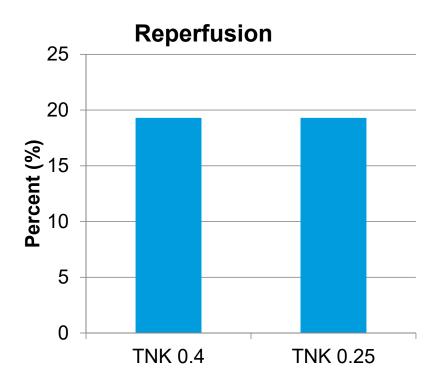
Trial Design

- Multicenter, prospective, randomized, open-label, blinded endpoint study
- Thrombolysis + thrombectomy


Inclusion Criteria

- NIHSS >0
- Onset within 4.5 hours
- Large vessel occlusion

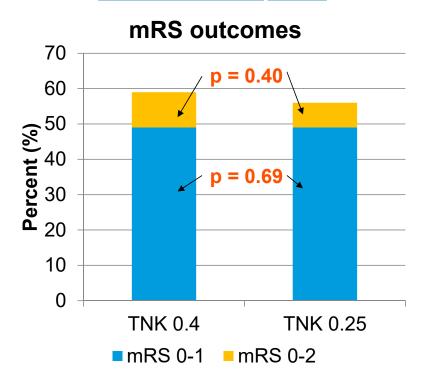
Primary Outcome (1 hour)


Reperfusion

Baseline Patient Characteristics

EXTEND-IA TNK Part 2 Outcomes

Primary


TICI = treatment in cerebral ischemia

Reperfusion

- Return of blood flow >50%
 measured by the TICI score OR
- 2. Lack of a retrievable thrombus

EXTEND-IA TNK Part 2 Outcomes

Secondary

Safety

	TNK 0.4	TNK 0.25	P value
sICH	7 (4.7%)	2 (1.3%)	0.12
Death	26 (17%)	22 (15%)	0.35

* 4/7 sICH in TNK 0.4 group due to wire perforation

EXTEND-IA TNK Part 2

Strengths

- Baseline characteristics well balanced
- Stroke severity and large vessel occlusions

Limitations

sICH due to thrombectomy complications

Tenecteplase 0.25 mg/kg and tenecteplase 0.4 mg/kg had similar rates of reperfusion.

What about functional outcomes in severe strokes treated with TNK?