Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for ⁹⁰Y resin microspheres

Andrew S. Kennedy^{1,2}, David Ball³, Steven J. Cohen³, Michael Cohn⁴, Douglas M. Coldwell⁵, Alain Drooz⁶, Eduardo Ehrenwald⁷, Samir Kanani⁸, Steven C. Rose⁹, Charles W. Nutting¹⁰, Fred M. Moeslein¹¹, Michael A. Savin¹², Sabine Schirm¹, Samuel G. Putnam III³, Navesh K. Sharma¹³, Eric A. Wang¹⁴

¹Cancer Centers of North Carolina, Cary, NC, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA; ³Fox Chase Cancer Center, Philadelphia, PA, USA; ⁴Radiology Associates of Hollywood, Pembroke Pines, FL, USA; ⁵James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; ⁶Fairfax Radiological Consultants, Fairfax, VA, USA; ⁷Abbott Northwestern Hospital, Minneapolis, MN, USA; ⁸Inova Fairfax Hospital, Annandale, VA, USA; ⁹University of California, San Diego Moores Cancer Center, La Jolla, CA, USA; ¹⁰Radiology Imaging Associates, Englewood, CO, USA; ¹¹University of Maryland Medical Center, Baltimore, MD, USA; ¹²Beaumont Hospital, Royal Oak, MI, USA; ¹³University of Maryland School of Medicine, Baltimore, MD, USA; ¹⁴Charlotte Radiology, Charlotte, NC, USA

Correspondence to: Andrew S. Kennedy, MD, FACRO. Director, Radiation Oncology Research, Sarah Cannon Research Institute, 3322 West End Avenue, Suite 800, Nashville, TN 37203, USA. Email: Andrew.kennedy@scresearch.net.

Background: Metastatic colorectal cancer liver metastases Outcomes after RadioEmbolization (MORE) was an investigator-initiated case-control study to assess the experience of 11 US centers who treated liver-dominant metastases from colorectal cancer (mCRC) using radioembolization [selective internal radiation therapy (SIRT)] with yttrium-90-(⁹⁰Y)-labeled resin microspheres.

Methods: Data from 606 consecutive patients who received radioembolization between July 2002 and December 2011 were collected by an independent research organization. Adverse events (AEs) and survival were compared across lines of treatment using Fisher's exact test and Kaplan-Meier estimates, respectively.

Results: Patients received a median of 2 (range, 0-6) lines of prior chemotherapy; 35.1% had limited extrahepatic metastases. Median tumor-to-liver ratio and -activity administered at first procedure were 15% and 1.17 GBq, respectively. Hospital stay was <24 hours in 97.8% cases. Common grade \geq 3 AEs over 184 days follow-up were: abdominal pain (6.1%), fatigue (5.5%), hyperbilirubinemia (5.4%), ascites (3.6%) and gastrointestinal ulceration (1.7%). There was no statistical difference in AEs across treatment lines (P>0.05). Median survivals [95% confidence interval (CI)] following radioembolization as a 2nd-line, 3rd-line, or 4th-plus line were 13.0 (range, 10.5-14.6), 9.0 (range, 7.8-11.0), and 8.1 (range, 6.4-9.3) months, respectively; and significantly prolonged in patients with ECOG 0 *vs.* \geq 1 (P=0.009). Statistically significant independent variables for survival at radioembolization were: disease stage [extrahepatic metastases, extent of liver involvement (tumor-to-treated-liver ratio)], liver function (uncontrolled ascites, albumin, alkaline phosphatase, aspartate transaminase), leukocytes, and prior chemotherapy.

Conclusions: Radioembolization appears to have a favorable risk/benefit profile, even among mCRC patients who had received \geq 3 prior lines of chemotherapy.

Keywords: Yttrium-90 (⁹⁰Y); brachytherapy; salvage therapy; albumin; alkaline phosphatase; ascites; bilirubin

Submitted Nov 20, 2014. Accepted for publication Dec 08, 2014. doi: 10.3978/j.issn.2078-6891.2014.109 View this article at: http://dx.doi.org/10.3978/j.issn.2078-6891.2014.109

Introduction

In 2013, there were an estimated 142,820 new cases and 50,830 deaths due to colorectal cancer (CRC) in the United States (1). Liver metastases are common among patients with metastatic CRC (mCRC), and while surgical resection of these tumors is the treatment of choice, anatomical factors (such as location or extent of metastatic lesions), inadequate hepatic functional reserve, or comorbidities render approximately 75-90% of patients ineligible for resection (1). For patients with unresectable liver metastases, there are several locoregional liver-directed treatment options available.

One such liver-directed treatment is radioembolization [RE; also termed selective internal radiation therapy (SIRT)] with vttrium-90-labeled (⁹⁰Y) microspheres (2). This treatment modality utilizes the well-characterized dual vasculature of the liver to selectively deliver radioactive isotopes to liver tumors via the hepatic artery. The feasibility of transarterial ⁹⁰Y-RE to treat liver metastases was first described in 1965 (3), and since then, there have been numerous published studies of its effectiveness in both primary and metastatic liver tumors (4). In prospective clinical studies, RE with ⁹⁰Y resin microspheres improved response rates in the liver and extended time to progression and overall survival (OS), relative to chemotherapy alone, in both the first-line and refractory setting (5-8) among patients with mCRC. Metastatic colorectal cancer liver metastases Outcomes after RadioEmbolization (MORE) was a retrospective study designed to evaluate the safety and OS associated with ⁹⁰Y-RE in patients with mCRC, based on the collective experience of centers in the United States.

Methods and materials

Study design

This was an investigator-initiated study (clinicaltrials.gov identifier: NCT01815879). Fifteen of the most experienced radioembolization centers using ⁹⁰Y-resin microspheres in the United States were invited by the principal investigator to participate in this retrospective review, and 11 of these centers accepted. Institution review board exemptions were granted prior to the collection of data at each site. All patients with a diagnosis of mCRC who received at least one radioembolization procedure were followed-up and included in the analyses. Data were collected from source documentation at each site by an independent contract research organization. All patient identifiers were replaced with a unique study number.

Centers were guided by the published consensus from the Radioembolization Brachytherapy Oncology Consortium (REBOC) and other earlier reviews in the selection of patients, pre-treatment work-up and dosimetry (2,9,10). In summary, ⁹⁰Y-RE was considered for those patients with advanced liver-dominant mCRC who were not suitable for surgery, ablation or systemic therapy, and had progressed or become intolerant to at least one line of systemic therapy (11,12).

Radioembolization

The technique and rationale for the various procedures involved with delivering radioactive ⁹⁰Y resin microspheres (SIR-Spheres; Sirtex Medical Ltd, Sydney, Australia) into the hepatic artery are well described elsewhere (2). It was the treating physician's preference whether to treat lobar or bilobar disease in a single session. All activity calculations for ⁹⁰Y were planned using the body surface area methodology as per consensus guidelines. Clinical judgment was used to assess the appropriateness of RE in patients presenting with relative contraindications including compromised pulmonary function, ascites or inadequate liver reserve.

Data collection and analysis

Safety data were collated from the medical records at baseline, on the day of the first ⁹⁰Y-RE procedure (day 0), and at all subsequent visits or until death. All results from hematologic, liver function and blood biochemistry tests and physical examination were recorded. The nature and severity of all adverse events (AEs) were graded using the National Cancer Institute Common Toxicity Criteria Adverse Events version 3.0 (13). Data were reported on the time and highest grade across each of the following time-points: days 0, 1-7, 8-90 and 91-184 and any time-point. Survival was calculated from the day of the first ⁹⁰Y-RE procedure to the day of death or last follow-up. Patients were censored at the time of last follow up if their status could not be established.

Statistical methodology

Summary statistics for continuous variables include the mean, median, standard deviation, interquartile range (IQR), minimum and maximum, and 95% confidence intervals (CI), as appropriate. Categorical data are summarized by frequency distributions with percentage based on non-

missing data. Descriptive summaries are provided for baseline patient characteristics, prior chemotherapy history, ⁹⁰Y treatments and AEs. The association of Grade 3+ AEs or death and lines of prior chemotherapy (1,2,3-6) utilized Fisher's exact test. Overall and stratified survival were estimated by the method of Kaplan and Meier (14) and the Log rank test was used to assess statistical significance. Univariate Cox proportional hazards models were applied to identify univariate prognostic factors associated with survival and a multivariate proportional hazards model was applied to the statistically significant univariate variables by either Kaplan-Meier or Cox proportional hazards models. The analysis model was constructed based on the maximum number of statistically significant variables. Statistical significance was determined at 2-sided alpha 0.05, and no adjustments were made for multiple comparisons. All statistical analyses were conducted using SAS (SAS, Cary NC) version 9.2 XP Pro statistical analysis software.

Results

Patient characteristics and prior treatment

Between July 2002 and December 2011, 606 consecutive patients with mCRC were treated with 90 Y-RE at the 11 participating centers (*Table 1* and supplementary *Table S1*) and followed up over a median of 8.6 (range, 0.1-77.7) months from first radioembolization procedure (day 0). During this time, a total of 503 deaths were recorded. Candidates for 90 Y-RE had either had liver-only (64.9%) or limited extra-hepatic metastases with an indolent clinical course (35.1%); a few patients had the primary *in situ* (13.0%).

Patients had received a median of 2 prior lines of systemic chemotherapy (range, 0-6) for the treatment of mCRC, consisting mostly of fluoropyrimidine-based treatment combined with oxaliplatin or irinotecan with or without bevacizumab (1st or 2nd-line) and an EGFR inhibitor (3rd-line) (see supplementary *Table S2*). After systemic chemotherapy for mCRC, 206 patients (35.3%) received ⁹⁰Y-RE second-line (after one prior line of chemotherapy), 184 (31.6%) ⁹⁰Y-RE 3rd-line (after two prior lines), and 158 patients (27.1%) ⁹⁰Y-RE fourth-plus line (after three or more prior lines).

Treatment target and design

A median of two ⁹⁰Y-RE procedures (IQR: 1.0) were

conducted for each patient. Hospital stay was <24 hours in 97.8% of cases. The treatment volume (whole-liver, lobar or segmental) and design (i.e., sequence of treatments) are outlined in Supplementary Table S3. Most patients (93.2%) received ⁹⁰Y-RE as either 1 (49.7%) or 2 (43.6%) procedures, mainly targeting either the whole liver (65.7%) or right lobe (27.7%). For 219 (36.1%) patients who received wholeliver treatment using a sequential lobar approach, ⁹⁰Y-RE of both lobes occurred within a 10-week timeframe in 84.5% of cases; the right lobe was determined to be the dominant diseased lobe and was treated before the left lobe in 86.7% of cases (see supplementary Table S3). Of 179 (29.5%) patients who received initial whole-liver treatment, retreatment of partial or whole liver occurred in 26.8%. The median tumor-to-target-liver ratio for the first ⁹⁰Y-RE therapy was 15% (IQR: 18%) (see supplementary Table S4), while the median overall tumor-to-target-liver ratio considering sequential treatment of bilobar disease and/or subsequent ⁹⁰Y-RE was 15% (IQR: 21%). Patients received a median of 1.17 GBq (IQR: 0.49) of ⁹⁰Y activity for the first procedure, which was greater than for any subsequent ⁹⁰Y-RE procedure. A median of 1.46 (range, 0.11-5.51) GBq of total ⁹⁰Y activity was delivered to patients across all treatments. Correspondingly, compared to the initial procedure, the median treated liver and tumor volumes were approximately halved (46.8% and 57.3%, respectively) during the second procedure, reflecting the predominant technique of treating whole-liver or right lobe in the first session, and left lobe subsequently. Post-90Y-RE only a minority of patients continued to receive chemotherapy, based on the available data (see supplementary Table S5).

Safety and tolerability

AEs were monitored from the day of the first 90 Y-RE procedure up to 184 days (6 months) in all 606 patients. All-cause cumulative mortality was 12 (2.0%) on day 30, 37 (6.1%) on day 60 and 85 (14.0%) on day 90 after the procedure.

Common AEs were usually mild (grade 1/2) and included: fatigue (all grades: 43.7%; grade \geq 3: 5.8%), abdominal pain (39.3%; 6.1%), nausea (28.4%; 1.3%) and vomiting (10.6%; 1.5%) (*Table 2* and supplementary *Table S6*). These events appeared within the first week of treatment, and were mainly transient and managed with medication, as necessary.

Gastrointestinal ulcerations (all grades: 3.5%) was severe (grade \geq 3) in 1.7% of patients and may have contributed to

Journal of Gastrointestinal Oncology Vol 6, No 2 April 2015

Table 1 Baseline patient and disease character	ristics, and prior
procedures (N=606)	
Parameter	Data
Gender, N (%)	
Female	233 (38.4)
Male	373 (61.6)
Age, mean + SD (range) (years)	61.5±12.7
	(20.8-91.9)
Race, N (%) ^{xiv}	
White or Caucasian	398 (77.7)
Black or African American	67 (13.1)
Hispanic or Latino	17 (3.3)
Asian	12 (2.3)
Other	18 (3.5)
ECOG performance status, N (%) ^{xvi}	
0	168 (65.4)
1	72 (28.0)
2	14 (5.4)
3	3 (1.2)
Site of primary, N (%) ⁱ	0 (112)
Colon	443 (73.3)
Rectum	133 (22.0)
Colorectal	
	28 (4.6)
Primary tumor in situ, N (%) ⁱⁱⁱ	78 (13.0)
Metastases (%) ^{xi*}	
Synchronous	396 (69.6)
Extrahepatic metastases, N (%)	
Yes	213 (35.1)
No	393 (64.9)
Lung	148 (24.4)
Lymph node	67 (11.1)
Peritoneum	17 (2.8)
Bone	30 (5.0)
Other	38 (6.3)
Carcinoembryonic antigen,	62.2 (283.4)
median (IQR) (μg/L) ^{×ν}	
Ascites, N (%) ^{vii}	
Yes	28 (4.7)
Prior liver-directed procedures, N (%)	
Any	183 (30.2)
Surgery and/or ablation	168 (27.7)
Vascular therapy (HAI, TACE, TAE)	37 (6.1)
Upper abdominal radiation	7 (1.2)
Stereotactic external beam radiotherapy	4 (0.7)
Table 1 (continued)	(0)

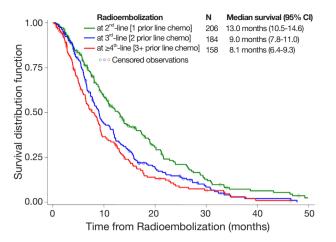

Table 1 (continued)

Table 2 Common ($\geq 1\%$ or recognized potential complications)* all-causality adverse events by severity (CTCAE v3 grade) from first ⁹⁰Y-RE procedure (Day 0) in 606 patients

System organ, class	ŀ	Any time point, days 0-184, N	(%)
System organ, class	Unknown	CTCAE grade 1-2	CTCAE grade ≥3
Gastrointestinal	3 (0.5)	251 (41.4)	62 (10.2)
Abdominal pain	1 (0.2)	200 (33.0)	37 (6.1)
Nausea	5 (0.8)	159 (26.2)	8 (1.3)
Vomiting	0	55 (9.1)	9 (1.5)
Gastrointestinal ulcer	1 (0.2)	10 (1.7)	10 (1.7)
Abdominal distension	0	16 (2.7)	2 (0.3)
Dyspepsia	0	20 (3.3)	0
Gastritis	0	3 (0.5)	3 (0.5)
Duodenitis	0	1 (0.2)	1 (0.2)
Intestinal obstruction	1 (0.2)	2 (0.3)	4 (0.7)
Constipation	2 (0.4)	18 (2.9)	0
Diarrhea	0	9 (1.5)	0
Flatulence	0	6 (1.0)	0
Constitutional	7 (1.2)	241 (39.8)	39 (6.4)
Fatigue	4 (0.7)	228 (37.6)	33 (5.5)
Fever	2 (0.4)	43 (7.1)	2 (0.3)
Weight loss	1 (0.2)	11 (1.8)	0
Peripheral edema	3 (0.5)	3 (0.5)	4 (0.7)
Psychiatric	3 (0.5)	42 (6.9)	5 (0.8)
Anorexia nervosa	3 (0.5)	41 (6.8)	5 (0.8)
lepatobiliary	1 (0.2)	69 (11.4)	52 (8.6)
Hyperbilirubinemia	1 (0.2)	61 (10.1)	31 (5.1)
Ascites	2 (0.3)	11 (1.8)	17 (2.8)
Radioembolization-induced liver disease	5 (0.8)	2 (0.3)	3 (0.5)
Cholecystitis	0	5 (0.8)	2 (0.3)
Hepatic failure	2 (0.3)	2 (0.3)	2 (0.3)
/lusculoskeletal	1 (0.2)	17 (2.8)	1 (0.2)
Back pain	0	7 (1.2)	0
/ascular disorders	2 (0.3)	7 (1.2)	7 (1.2)
Respiratory	2 (0.3)	19 (3.1)	2 (0.3)
Influenza	1 (0.2)	10 (1.6)	0

*, This table reports the highest grade of adverse event reported by each patient at any time interval from Days 0-184.

Journal of Gastrointestinal Oncology Vol 6, No 2 April 2015

Figure 1 Kaplan-Meier survival curves of patients with mCRC following radioembolization using ⁹⁰Y resin microspheres stratified by treatment setting for ⁹⁰Y RE relative to prior chemotherapy lines. mCRC, metastatic CRC.

the death of one (0.2%) patient. There were 3 recorded cases among 606 (0.5%) patients of grade ≥ 3 radioembolizationinduced liver disease (REILD) and 2 further cases of grade ≥ 3 hepatic failure (total 5/606; 0.8%); all events occurred between 8-90 days following the first treatment and all patients subsequently died. More detailed analysis of these patients found that all were Caucasians; none had prior surgery or other liver-directed treatment. ⁹⁰Y-RE was administered as a single whole-liver treatment (1 patient) or sequential lobar treatment (1 patient); or only to the right lobe (2 of 3 patients with reported REILD). Four of the five patients (including all three patients with REILD) had disease which had advanced beyond the liver to the lungs, as well as one other site (lymph, spleen or bone) in three patients; two patients had ascites at baseline and therefore were outside of the normally accepted eligibility criteria.

Analyses of baseline laboratory parameters revealed that a high proportion of patients had mild-to-moderate (mostly grade 1 or 2) changes before ⁹⁰Y-RE including: alkaline phosphatase (all grades: 59.3%; grade 3: 3.0%); AST (49.8%; 1.5%), albumin (33.7%; 1.4%) and hemoglobin (40.1%; 0.7%). The proportion of patients with mild asymptomatic increases in hepatic enzymes level rose during the 90 days post-treatment, but these changes were mostly transient. The incidence of any clinically significant grade \geq 3 change in liver function tests is recorded in the supplementary *Table S7*. Raised total bilirubin (all grades; all causality including liver progression) was recorded in 6.2% of patients at baseline, increasing to 22.6% of patients by day 90 following the first treatment, with a minority experiencing grade 3 (4.9%) or 4 (2.7%) events at day 90.

Analyses found no correlation between the number of lines of prior chemotherapy and the reporting of severe (grade \geq 3) AEs over the 90 days after the first ⁹⁰Y-RE procedure (P>0.05 by Fisher's Exact Test). The incidence of all grade \geq 3 hepatobiliary events was similar regardless of whether patients had received prior chemotherapy or not (P=1.00). Grade \geq 3 events such as fatigue (5.6% vs. 2.9%), abdominal pain (6.5% vs. 0%) and hyperbilirubinemia (5.3% vs. 2.9%) were more frequently reported in patients who had received prior chemotherapy compared to the chemotherapy-naïve sub-group, although the difference was not statistically significant.

Survival analyses

The median OS in 606 patients was 9.6 months (95% CI: 9.0-11.1), which did not differ significantly by gender, race or age (supplementary *Table S8*). Analyses of patients treated with radioembolization over a decade found that survival did not differ significantly across time periods.

Median survival was significantly prolonged in patients with ECOG ps 0 at baseline compared with ECOG \geq 1 (P=0.009); in patients without extra-hepatic metastases compared with those with extra-hepatic metastases (P<0.001); in patients who were considered eligible for retreatment with ⁹⁰Y-RE more than 90 days after the first procedure compared with those who were not (P<0.001); and in patients who had received at least three ⁹⁰Y-RE procedures (P<0.005) (*Table 3*).

Median survivals (95% CI) differed significantly between patients receiving ⁹⁰Y-RE as a 2nd-, 3rd-, and 4th+ line of treatment after chemotherapy: 13.0 months (95% CI: 10.5-14.6), 9.0 months (95% CI: 7.8-11.0), and 8.1 months (95% CI: 6.4-9.3), respectively (P<.001) (*Figure 1*). Median survival in patients with unknown prior lines of chemotherapy (N=23) was 13.1 months (95% CI: 4.1-14.4). For the highly heterogeneous sub-group of patients who had received no prior chemotherapy, survival differed significantly by age: younger patients (<75 years) survived a median of 25.2 months (95% CI: 9.3-36.5) compared with 11.9 months (95% CI: 4.0-15.6) in patients aged \geq 75 years.

Survival was similar in patients who had received prior liver-directed surgery or ablation compared to those who had not (P=0.067). Survival was also significantly determined by the severity of liver dysfunction before ⁹⁰Y-RE (*Table 3*; supplementary *Table S8*).

Kennedy et al. Safety and efficacy of ⁹⁰Y microspheres

Table 3 Kaplan-Meier analcharacteristics	ysis of	survival	by baseline	
		Survi	val, months	,†
Characteristic -	Ν	Median	95% CI	P value
All	606	9.6	9.0-11.1	NA
ECOG performance status				0.009 ⁱ
0	168	11.2	9.1-13.1	
1	72	8.1	6.4-11.0	
2	14	6.0	2.3-12.2	
3	3	5.0	1.3-11.0	
Extra-hepatic metastases				<0.001
No	393	12.1	10.8-13.6	
Yes	213	7.4	6.1-8.5	
Primary tumor in-situ				0.016
No	522	10.0	9.1-11.8	
Yes	78	8.1	6.2-10.4	
Ascites				<0.001 ⁱⁱ
No	563	10.0	9.2-11.8	
Yes (controlled)	5	2.4	0.7-22.9	
Yes (uncontrolled)	23	5.5	3.6-7.4	
Prior lines of				<0.001
chemotherapy				
RE 2 nd -line	206	13.0	10.5-14.6	
RE 3 rd -line	184	9.0	7.8-11.0	
RE 4 th -line +	158	8.1	6.4-9.3	
RE 1 st -line				0.041
All	35	13.5	7.2-17.1	
<75 years	17	25.2	9.3-36.5	
≥75 years	18	11.9	4.0-15.6	
Number of ⁹⁰ Y-RE				0.005
procedures				
1	301	8.9	7.7-10.8	
2	264	9.6	8.6-11.2	
3	29	17.7	11.2-23.7	
4	10	19.0	9.3-25.4	
5	2	28.1	26.4-29.8	
1 st to 2 ^{nd 90} Y-RE				<0.001
procedure >90 days				
No	58	18.3	15.8-23.1	
Yes	246	9.2	8.1-9.9	
Table 3 (continued)				

Table 3 (continued)

Table 3 (continued)				
· · · · ·		Survi	val, months	t
Characteristic -	Ν	Median	95% CI	P value
Tumor-to-target liver			· · · · · ·	<0.001
involvement				
<25%	388	12.8	10.8-13.6	
25-50%	148	6.5	5.7-8.1	
>50%	22	6.0	3.6-9.1	
Carcinoembryonic				<0.001
antigen				
< median	215	13.6	12.2-16.3	
≥ median	215	7.4	6.6-8.5	
Total bilirubin, CTC grade				<0.001
0	556	10.4	9.3-11.9	
≥1	37	3.8	2.5-7.4	
Albumin, CTC grade				<0.001
0	392	13.0	11.6-13.9	
≥1	199	6.3	5.4-7.1	
Alkaline phosphatase,				<0.001
CTC grade				
0	241	15.7	13.9-17.7	
≥1	351	7.1	6.3-8.1	
Aspartate				<0.001
aminotransferase,				
CTC grade				
0	296	13.9	12.2-15.6	
≥1	294	7.2	6.3-8.7	
Creatinine, CTC grade	500			0.041
0	569	9.6	9.0-11.2	
≥1	26	7.1	4.7-12.2	0.001
Hemoglobin, CTC grade	0.5.5	10.0		<0.001
0	356	12.2	10.6-13.6	
≥1	238	7.6	6.4-9.0	

P values for continuous variables by one-way ANOVA; P values for dichotomous variables by Fisher's exact test, and P values for nominal categorical variables by Chi-Square general association test. [†], Median survival calculated by Kaplan-Meier analysis; ⁱ, P value: ECOG ps 0 *vs.* 1 *vs.* 2-3; ⁱⁱ, P value: ascites (not controlled) *vs.* ascites (controlled) or none; ⁱⁱⁱ, P value: RE procedures 1 *vs.* 2 *vs.* 3-5. CI, confidence interval; NA, not applicable.

Journal of Gastrointestinal Oncology Vol 6, No 2 April 2015

Upon multivariate analysis, statistically significant independent variables for survival at the time of ⁹⁰Y-RE were: disease stage [extrahepatic metastases, extent of liver involvement (tumor-to-treated-liver ratio)] and liver function (uncontrolled ascites, albumin, ALP, AST) and white blood cell count as well as prior lines of chemotherapy (supplementary *Table S9*).

Discussion

This study describes the risks and benefits of RE using ⁹⁰Y-resin microspheres in the largest analysis ever conducted in patients receiving RE for any tumor type. The data paint a picture of a cohort of patients who, despite a wide-ranging intensity and duration of prior chemotherapy for mCRC, had a similar stage of disease (i.e., predominately localized to the liver) at the point when treatment with ⁹⁰Y-RE was initiated. Despite this, we found that differences in the extent of disease in the liver (tumor-to-treated-liver ratio) and beyond (EHD), as well as baseline liver function (as measured by ascites and liver function tests) and extent of prior chemotherapy, all were significant predictors of survival.

Radiation damage (REILD) to normal liver reserve is always a concern and guides careful ⁹⁰Y activity selection and catheter placement. The incidence of REILD in this cohort is the lowest of any study of mCRC patients to date (5,8,15,16). In the majority of patients, REILD is transient and not fatal; however a few deaths have been reported in patients with progressive liver failure attributed to REILD and not tumor progression (5,8,15,16). The etiology of REILD is not known, with contradictory evidence published regarding increased risk related to: volume of liver irradiated, total activity of radiation delivered, prior partial hepatectomy, prior ablative liver therapy, and amount of prior chemotherapy exposure. The Pamplona group have shown that multiple lines of prior chemotherapy is a risk factor for REILD; however, analyses of our data found no correlation between the number of lines of prior chemotherapy (nor any one chemotherapy regimen) and the incidence of severe (grade \geq 3) AEs after ⁹⁰Y-RE (17,18).

Median survival following ⁹⁰Y-RE was 13.0 months in the 2nd-line setting after chemotherapy which compares well to similar patients receiving 2nd-line chemotherapy combined with aflibercept (median 13.5 months) (19), and bevacizumab beyond progression (median 11.2 months) (20). The median survival of 9.0 and 8.1 months following ⁹⁰Y-RE in patients with 2 or \geq 3 prior lines of chemotherapy, respectively, in this study compares favorably with patients treated in a similar setting using regorafenib or placebo (median 6.4 vs. 5.0 months) (21). The data also point to a sub-cohort of long-term survivors who had already survived a median of 25.6 months (and had received a median of \geq 3 lines of chemotherapy) since diagnosis of mCRC and were still eligible for ⁹⁰Y-RE. Although twice as likely to have metastases beyond the liver and adverse prognostic clinical markers such as ascites and elevated alkaline phosphatase, these patients remarkably survived a median of 8.1 months after ⁹⁰Y-RE (i.e., a median OS of 34 months since diagnosis of mCRC compared with a median survival of 24 months since diagnosis of mCRC in patients who were at a similar stage of disease after one line of chemotherapy). These differences can be attributed in part to the tumor biology of the patients selected as candidates for this treatment.

In conclusion, the evidence from this study show that even among patients who were heavily pre-treated, ⁹⁰Y-RE appears to have a favorable risk/benefit profile and offer clinicians a more targeted approach for the management of liver-dominant mCRC.

Acknowledgements

We would like to thank Mark Van Buskirk for his outstanding statistical work and advice; and Rae Hobbs for her editorial assistance.

Funding: This was an investigator-initiated study funded by Sirtex Medical Limited, Sydney, Australia through an educational grant awarded to Dr. Kennedy, Sarah Cannon Research Institute.

Authors' contributions: All authors meet the three conditions outlined in *JGO* author's instructions. Specific detail of major author contributions in addition include: AK conception, data acquisition, design and drafting of article. SS, MS, CN, SC provided important intellectual contributions, and revisions of drafts. DB, MC, DC, AD, EE, SK, SR, FM SP, NS and EW each contributed data interpretation, article revisions, and approval of final version to be published.

Disclosure: Received grants for clinical trials from Sirtex Medical (AK, DB, NS); Consultant to Sirtex Medical (DC); Proctor for Sirtex Medical (MC, AD, FM, CN, SP, SR, EW); Speaker for BSD Medical (MS); nothing to disclose (AC, EE, SK, SS). The authors declare no conflict of interest.

References

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013.

Kennedy et al. Safety and efficacy of ⁹⁰Y microspheres

CA Cancer J Clin 2013;63:11-30.

- Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007;68:13-23.
- Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 1965;162:267-78.
- Kennedy AS, Salem R. Radioembolization (yttrium-90 microspheres) for primary and metastatic hepatic malignancies. Cancer J 2010;16:163-75.
- Bester L, Meteling B, Pocock N, et al. Radioembolization versus standard care of hepatic metastases: comparative retrospective cohort study of survival outcomes and adverse events in salvage patients. J Vasc Interv Radiol 2012;23:96-105.
- Maisey N, Chau I, Cunningham D, et al. Multicenter randomized phase III trial comparing protracted venous infusion (PVI) fluorouracil (5-FU) with PVI 5-FU plus mitomycin in inoperable pancreatic cancer. J Clin Oncol 2002;20:3130-6.
- Lim L, Gibbs P, Yip D, et al. A prospective evaluation of treatment with Selective Internal Radiation Therapy (SIRspheres) in patients with unresectable liver metastases from colorectal cancer previously treated with 5-FU based chemotherapy. BMC Cancer 2005;5:132.
- 8. Seidensticker R, Denecke T, Kraus P, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 2012;35:1066-73.
- Coldwell DM, Sewell PE. The expanding role of interventional radiology in the supportive care of the oncology patient: from diagnosis to therapy. Semin Oncol 2005;32:169-73.
- 10. Salem R, Thurston KG, Carr BI, et al. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 2002;13:S223-9.
- Coldwell D, Sangro B, Wasan H, et al. General selection criteria of patients for radioembolization of liver tumors: an international working group report. Am J Clin Oncol 2011;34:337-41.
- 12. Wasan H, Kennedy A, Coldwell D, et al. Integrating radioembolization with chemotherapy in the treatment

paradigm for unresectable colorectal liver metastases. Am J Clin Oncol 2012;35:293-301.

- Common Terminology Criteria for Adverse Events v3.0. Available online: http://ctep.cancer.gov/ protocolDevelopment/electronic_applications/docs/ ctcaev3.pdf
- 14. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457-481.
- 15. Cosimelli M, Golfieri R, Cagol PP, et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010;103:324-31.
- Kennedy AS, McNeillie P, Dezarn WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 2009;74:1494-500.
- Gil-Alzugaray B, Chopitea A, Iñarrairaegui M, et al. Prognostic factors and prevention of radioembolizationinduced liver disease. Hepatology 2013;57:1078-87.
- Sangro B, Gil-Alzugaray B, Rodriguez J, et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008;112:1538-46.
- Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-506.
- Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 2013;14:29-37.
- Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013;381:303-12.

Cite this article as: Kennedy AS, Ball D, Cohen SJ, Cohn M, Coldwell DM, Drooz A, Ehrenwald E, Kanani S, Rose SC, Nutting CW, Moeslein FM, Savin MA, Schirm S, Putnam SG III, Sharma NK, Wang EA. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for ⁹⁰Y resin microspheres. J Gastrointest Oncol 2015;6(2):134-142. doi: 10.3978/j.issn.2078-6891.2014.109

Supplementary Tables

Table S1 Baseline patient and disease characteris		e setting of ⁹⁰ Y-RE			herapy
Parameter	1 st -line ⁹⁰ Y-RE	2 nd -line ⁹⁰ Y-RE	3 rd -line ⁹⁰ Y-RE	4 th + line ⁹⁰ Y-RE	Unknown
Farantelei	(N=35)	(N=206)	(N=184)	(N=158)	(N=23)
Gender, N (%)					
Female	14 (40.0)	74 (35.9)	67 (36.4)	71 (44.9)	7 (30.4)
Male	21 (60.0)	132 (64.1)	117 (63.6)	87 (55.1)	16 (69.6)
Age (years)					
mean \pm SD (range)	71.6±12.4	60.7±12.6	61.5±12.0	60.7±11.9	58.5±16.9
	(33.6-91.9) [†]	(30.0-89.2)	(30.0-84.3)	(33.5-88.1)	(20.8-85.1)
≥70 (%)	21 (60.0)	50 (24.3)	46 (25.0)	37 (23.4)	6 (26.1)
≥75 (%)	17 (48.6)	30 (14.6)	26 (14.1)	21 (13.3)	3 (13.0)
ECOG performance status, N (%)					, vii
0	6 (50.0) ^{xiii}	44 (61.1) ^{xvi}	60 (65.9) [×]	57 (70.4) ^{xiv}	1 ^{xii}
1	3 (25.0)	25 (34.7)	25 (27.5)	19 (23.5)	0
2	3 (25.0)	3 (4.2)	5 (5.5)	3 (3.7)	0
3 Primon (tumor in city, N/(%)	0	0	1 (1.1)	2 (2.5)	0
Primary tumor in situ, N (%) Yes	1 (2.9) ^{i,§}	35 (17.2) ^{ii,§}	18 (9.8) [§]	19 (12.1) ^{i,§}	5 (23.1) ^{ii,§}
Extrahepatic metastases, N (%)	1 (2.9)	33 (17.2)	10 (9.0)	19(12.1)	5 (23.1)
Yes	7 (20.0) [‡]	55 (26.7) [‡]	67 (36.4) [‡]	79 (50.0) [‡]	5 (21.7) [‡]
Ascites, N (%)	7 (20.0)	00 (20.7)	07 (00.4)	73 (30.0)	5 (21.7)
Yes	1 (2.9)	7 (3.5) ^{iv}	8 (4.4) ^{iv}	12 (7.9) [∨]	O ⁱⁱ
Controlled	1 (2.9)	2 (1.0)	1 (0.6)	1 (0.7)	0
Uncontrolled	0	5 (2.5)	7 (3.9)	11 (7.2)	0
Prior liver-directed procedures, N (%)	, , , , , , , , , , , , , , , , , , ,	0 (2.0)	. (0.0)		, , , , , , , , , , , , , , , , , , ,
Surgery and/or ablation	4 (11.4)	56 (27.2)	56 (30.4)	50 (31.6)	2 (8.7)
Vascular therapy	0 [‡] ´	2 (1.0) [‡]	8 (4.3) [‡]	27 (17.1) [‡]	0 [‡]
Time since identification of mCRC to RE,	1.8 (0.4-20.9) ^{I,‡}			26.0 (4.0-90.6) ^{ix,‡}	8.6 (3.5-59.8) ^{iv,‡}
Median (range) (months)					
Tumor-to-target liver ratio, Median (range) (%)	15% (0.9-71) ^{iv}	15% (0.1-100) ^{xi}	12% (0.3-78) [×]	15% (0.2-100) [×]	28% (1.7-60) ⁱ
Tumor-to-target liver, N (%)					
<25%	23 (74.2) ^{iv}	132 (70.6) ^{xi}	126 (73.3) [×]	97 (66.4) [×]	10 (45.5) ⁱ
25-50%	5 (16.1)	48 (25.7)	43 (25.0)	41 (28.1)	11 (50.0)
>50%	3 (9.7)	7 (3.7)	3 (1.7)	8 (5.5)	1 (0.5)
Albumin (g/dL)					
Median (IQR)	3.8 (0.6)	3.7 (0.7) ^{vii}	3.7 (0.7) ^{vii}	3.6 (0.8)	3.6 (1.3)
CTC grade ≥1, N (%)	9 (25.7)	66 (33.2)	51 (28.8)	64 (40.5)	9 (40.9)
Total bilirubin (mg/dL)	c			<u>,</u>	c
Median (IQR)	0.7 (0.3) [§]	0.6 (0.4) ^{vii,§}	0.7 (0.4) ^{v,§}	0.7 (0.5) [§]	0.7 (0.5) [§]
CTC grade ≥1, N (%)	0	10 (5.0)	12 (6.7)	13 (8.2)	2 (9.1)
Alkaline phosphatase (U/L)					
Median (IQR)	116.0 (124.0) [‡]	123.5 (111.0) ^{viii,‡} 96 (48.5) ^{viii,‡}	147.0 (131.0) ^{iv,‡}	187.0 (192.0) ^{i,‡}	136.5 (115.0) [‡]
CTC grade ≥ 1 , N (%)	17 (48.6) [‡]	96 (48.5)	113 (62.8) ^{iv,‡}	112 (71.3) ^{i,‡}	13 (59.1) [‡]
Number of ⁹⁰ Y-RE procedures, N (%)	17 (19 6)	101 (40.0)	QQ (15 1)	88 (55 7)	10 (F0 0) ⁱ
1 2	17 (48.6) 15 (42.9)	101 (49.0) 89 (43.2)	83 (45.1) 88 (47.8)	88 (55.7) 61 (38.6)	12 (52.2) ⁱ 11 (47.8)
2 3	15 (42.9) 2 (5.7)	89 (43.2) 12 (5.8)	88 (47.8) 10 (5.4)	5 (3.2)	11 (47.8) 0
4	2 (5.7) 1 (2.9)	3 (1.5)	3 (1.6)	3 (1.9)	0
5	1 (2.9)	3 (1.5) 1 (0.5)	0	3 (1.9) 1 (0.6)	0
Missing patient baseline data on: ⁱ , 1 patier	•	()		()	
viii, 8 patients; ^{ix} , 9 patients; ^x , 12 patients; ^{xi} , 1					
, o patients, , o patients, , 12 patients; , 1		patients, , 25 pat	ients, , 77 patier	its, , so patients;	, 154 patients;

[§], P<0.05 across sub-groups; [‡], P<0.001 across sub-groups; [†], P< 0.001 compared to other sub-groups.

Table S2 Prior systemic ch	Table S2 Prior systemic chemotherapy history for mCRC										
Driar aganta	⁹⁰ Y-RE se	etting relative to prior chemotherap	y lines, N (%)								
Prior agents	2 nd -line ⁹⁰ Y-RE (N=206)	3 rd -line 90Y-RE (N=184)	4 th + line ⁹⁰ Y-RE (N=158)								
Fluoropyrimidine	185 (89.8)	177 (96.2)	155 (98.1)								
Oxaliplatin	148 (71.8)	152 (82.6)	150 (94.9)								
Irinotecan	27 (13.1)	124 (67.4)	145 (91.8)								
Any biologic agent	141 (68.4)	151 (82.1)	148 (93.7)								
Bevacizumab	132 (64.1)	139 (75.5)	133 (84.2)								
EGFR inhibitor	12 (5.8)	44 (23.9)	109 (69.0)								
TKI inhibitors	0	1 (0.5)	7 (4.4)								
Unspecified agent(s)	16 (7.8)	21 (11.4)	14 (8.9)								
Other agents	3 (1.5)	5 (2.7)	13 (8.2)								

Table S3 Treatm	ent target and design						
Treated target	Design (sequence)	Total n	umber of ⁹⁰	Y-RE pro	cedures p	oer patie	nt, N (%)
Treated target	Design (sequence)	1 (N=301)	2 (N=264)	3 (N=29)	4 (N=10)	5 (N=2)	Total
Whole liver							
Total		131	231	26	8	2	398 (65.7)
Single session	Whole-liver, single session \pm retreatment (partial or whole)) 131	45	1	1	1	179 (29.5)
Sequential	Right lobe before left lobe or whole liver (<10 weeks ^{\dagger})		143	15	5	1	164 (27.1)
(<10 weeks)	Left lobe before right lobe or whole liver (<10 weeks ^{\dagger})		20	4	1		25 (4.1)
Sequential	Right lobe before left lobe or whole liver (≥ 10 weeks [†])		18	4			22 (3.6)
(≥10 weeks)	Left lobe before right lobe or whole liver (≥ 10 weeks [†])		4	2	1		7 (1.2)
Sequential	Right lobe before left lobe (interval unknown)		1				1 (0.2)
(unknown)							
Partial liver	Right lobe ± segmental	140	24	3	1		168 (27.7)
	Left lobe ± segmental	26	6		1		33 (5.4)
	Segmental	4	1				5 (0.8)
Unknown	Right lobe + left or unknown target segment		2				2 (0.3)
Total		301 (49.7)	264 (43.6)	28 (4.6)	10 (1.7)	2 (0.3)	606 (100.0)
[†] , Denotes the in	terval between first and second treatments in patients r	eceiving se	equential lo	bar 90Y-R	E		

Patients treated, N Patients treated, N					
Patients treated, N	-	2	m	4	Ð
(inc. childt (02) modion (manach)	606	305	41	12	2
Luig Siuir (70), median (iange)	4.9 (0.02-45.0) ^{vii}	4.7 (0.02-22.5) ^{xviii}	5.95 (1.1-19.0) ^{vii}	7.8 (2.0-11.4) ^v	7.75 (5.9-9.6)
Embolization of non-target arteries, N (%)	499 (82.5)	58 (19.1) ⁱⁱ	4 (10.0)	4 (33.3)	2 (100)
Dosimetry method					
BSA formula	554 (97.0)	271 (94.8)	38 (100) ^{III}	12 (100)	2 (100)
Empiric method	17 (3.0) ^{xv}	15 (5.2) ^{xii}	0	0	0
Planned treatment approach, N (%)					
Whole liver	179 (29.5)	41 (13.4)	5 (12.2)	1 (8.3)	0
Right lobe	357 (58.9)	62 (20.3)	28 (68.3)	3 (25.0)	0
Left lobe	65 (10.7)	194 (63.6)	8 (19.5)	8 (66.7)	2 (100.0)
Segmental	5 (0.8)	5 (1.6)	0	0	0
Unknown	0	3 (1.0)	0	0	0
Activity planned (GBq), median (range)	1.25 (0.32-3.00) ^x	0.72 (0.20-2.00) ^{vii}	1.01 (0.38-1.81)	0.77 (0.31-1.45)	0.84 (0.63-1.04)
Activity administered (GBq), median (range)	1.17 (0.11-2.29) ^V	0.66 (0.10-1.81) ^v	0.95 (0.33-1.79)	0.71 (0.11-1.45)	0.81 (0.62-0.99)
Hospital stay duration (days), N (%)					
<24 hours	590 (97.8)	294 (98.0)	40 (97.6)	12 (100)	2 (100)
≥24 hours	13 (2.2) ⁱⁱⁱ	6 (2.0) ^v	1 (2.4)	0	0
Total liver volume (mL), median (range)	1,751.5 (664.0-5,844.0) ^{xxii}	1,795.1 (842.0-4,528.0) ^{xix}	× 1,673.5 (922.0-4,304.3) ^{xi}	2,046.6 (1,279.5-2,664.1) ^{vi} 2,141.6 (2,139.4-2,143.8)	¹ 2,141.6 (2,139.4-2,14 [,]
Treated liver volume (mL), median (range)	1,409 (226.0-4,771.6) ^{xxiv}	660 (116.0-3463) ^{xx}	735 (250.0-2,032.0) ^{xiv}	na ^x	na
Total tumor volume (mL), median (range)	139.5 (2.8−3,329.0) ^{∞⊪}	80 (2.1-1978.0) ^{xxi}	105.65 (4.7-753.9) ^{xii}	249.3 (3.6-500.3) ^{vi}	133.45 (18.0-248.9)
Tumor-to-treated-liver ratio (%), median (range)	ge) 15 (0.1-100) ^{xvii}	12 (0.1-95) ^{xvi}	15 (0.3-70)	15 (0.3-65)	6 (0.8-12)
Missing baseline data on: ', 1 patient; ", 2 patients; ", 3 patients; '', 4 patients; ', 5 patients; '', 6 patients; '', 7 patients; ''', 10 patients; '', 11 patients; '', 12 patients; ''	tients; ", 3 patients; ", 4 patien	ts; ^v , 5 patients; ^{vi} , 6 pat	ients; ^{vii} , 7 patients; ^{viii} , 10	patients; ^{ix} , 11 patients; ^x	×, 12 patients; ^{×i} , 19 pa-
tients; ^{xii} , 19 patients; ^{xii} , 23 patients; ^{xv} , 30 patients; ^{xv} , 35 patients; ^{xvii} , 40 patients; ^{xvii} , 48 patients; ^{xvii} , 50 patients; ^{xx} , 122 patients; ^{xx} , 160 patients; ^{xvi}	atients; ^{xv} , 35 patients; ^{xvi} , 40 p.	atients; ^{xvii} , 48 patients;	^{xviii} , 50 patients; ^{xix} , 122 p.	atients; xx , 160 patients; x	^{xi} , 176 patients; ^{xxii} , 206
patients; ^{xxii,} 274 patients; ^{xxiv} , 281 patients; BSA,	3SA, body surface area; na, not available.	nt available.			
		T 2400 2	-	-	
Lable 33 Post- I-KE chemotherapy histor	7 for advanced in CKC, strating by the setting of 1 -KE relative to piror chemometapy lines N (%)	ou by the setting of T-1 ⁹⁰ Y-RF Setting relati	by the setting of <u>I-KE</u> relative to prior chemotherapy lines ³⁰ Y-RF Setting relative to prior chemotherapy lines N (%)	outerapy tittes ov lines N (%)	
Post-SIRT agents	1 st -line ⁹⁰ Y-RE (N=35) 2 nd -lin	2 nd -line ⁹⁰ Y-RE (N=206) 3 ^{ro}	3 rd -line ⁹⁰ Y-RE (N=184)	4 th + line ⁹⁰ Y-RE (N=158)) Unknown (N=23)
Number of patients treated post-SIRT	3 (8.6)	15 (7.3)	13 (7.1)	12 (7.6)	0
Continuation of regimen used pre-SIRT	0	3 (1.5)	6 (3.3)	8 (5.1)	0
Fluoropyrimidine	2 (5.7)	10 (4.9)	6 (3.3)	8 (5.1)	0
Oxaliplatin	1 (2.9)	3 (1.5)	3 (1.6)	3 (1.6)	0
Irinotecan	0	9 (3.5)	9 (4.9)	3 (1.6)	0
Any biologic agent		12 (5.8)	9 (4.9)	9 (5.7)	0
Bevacizumab	0	11 (5.3)	4 (2.2)	2 (1.3)	0
EGFR inhibitor	0	6 (2.9)	7 (3.8)	9 (5.7)	0

		Day 0, N (%)			Days 1-7, N (%)			Days 8-90, N (%)	(9	Day	Days 91-184, N (%)	(%)
System organ, class	Unknown	CTCAE grade 1-2	CTCAE grade ≥3	Unknown	CTCAE grade 1-2	CTCAE grade ≥3	Unknown	CTCAE grade 1-2	CTCAE grade ≥3	Unknown	CTCAE grade 1-2	CTCAE grade ≥3
Gastrointestinal	0	50 (8.3)	7 (1.2)	1 (0.2)	140 (23.1)	17 (2.8)	2 (0.3)	152 (25.1)	39 (6.4)	3 (0.5)	32 (5.3)	10 (1.7)
Abdominal pain	0	30 (5.0)	6 (1.0)	1 (0.2)	96 (15.8)	10 (1.7)	2 (0.3)	114 (18.8)	22 (3.6)	0	23 (3.8)	5 (0.8)
Nausea	0	30 (5.0)	2 (0.3)	2 (0.3)	76 (12.5)	3 (0.5)	2 (0.3)	65 (10.7)	3 (0.5)	1 (0.2)	10 (1.7)	1 (0.2)
Vomiting	0	9 (1.5)	0	0	20 (3.3)	5 (0.8)	0	31 (5.1)	3 (0.5)	1 (0.2)	1 (0.2)	1 (0.2)
GI ulcer	0	0	0	0	1 (0.2)	0	0	6 (1.0)	7 (1.2)	1 (0.2)	4 (0.7)	3 (0.5)
Abdominal distension	0	0	0	0	0	1 (0.2)	0	14 (2.3)	1 (0.2)	0	2 (0.3)	0
Dyspepsia	0	0	0	0	5 (0.8)	0	0	12 (2.0)	0	0	4 (0.7)	0
Gastritis	0	0	0	0	0	1 (0.2)	0	3 (0.5)	1 (0.2)	0	0	1 (0.2)
Duodenitis	0	0	0	0	0	0	0	0	1 (0.2)	0	1 (0.2)	0
Intestinal obstruction	0	0	0	0	1 (0.2)	1 (0.2)	0	0	3 (0.5)	1 (0.2)	1 (0.2)	0
Constipation	0	0	0	0	11 (1.8)	0	2 (0.3)	8 (1.3)	0	0	0	0
Diarrhea	0	0	0	0	5 (0.8)	0	0	4 (0.7)	0	0	0	0
Flatulence	0	2 (0.3)	0	0	1 (0.2)	0	0	4 (0.7)	0	0	0	0
Constitutional	0	32 (5.3)	5 (0.8)	3 (0.5)	114 (18.8)	7 (1.2)	6 (1.0)	162 (26.7)	25 (4.1)	4 (0.7)	25 (4.1)	6 (1.0)
Fatigue	0	28 (4.6)	4 (0.7)	0	96 (15.8)	6 (1.0)	4 (0.7)	154 (25.4)	22 (3.6)	2 (0.3)	21 (3.5)	4 (0.7)
Fever	0	3 (0.5)	1 (0.2)	2 (0.3)	28 (4.6)	0	1 (0.2)	18 (3.0)	1 (0.2)	0	2 (0.3)	0
Weight loss	0	0	0	0	1 (0.2)	0	1 (0.2)	6 (1.0)	0	0	4 (0.7)	0
Peripheral edema	0	0	0	0	0	0	1 (0.2)	1 (0.2)	2 (0.3)	2 (0.3)	2 (0.3)	2 (0.3)
Psychiatric	0	2 (0.3)	0	1 (0.2)	18 (3.0)	3 (0.5)	3 (0.5)	26 (4.3)	3 (0.5)	0	3 (0.5)	0
Anorexia nervosa	0	2 (0.3)	0	1 (0.2)	17 (2.8)	3 (0.5)	3 (0.5)	26 (4.3)	3 (0.5)	0	3 (0.5)	0
Hepatobiliary	0	0	0	0	5 (0.8)	0	0	43 (7.1)	35 (5.8)	2 (0.3)	31 (5.1)	22 (3.6)
Hyperbilirubinemia	0	0	0	0	1 (0.2)	0	0	36 (5.9)	18 (3.0)	1 (0.2)	30 (5.0)	18 (3.0)
Ascites	0	0	0	0	0	0	1 (0.2)	9 (1.5)	11 (1.8)	1 (0.2)	3 (0.5)	6 (1.0)
REILD	0	0	0	0	0	0	5 (0.8)	2 (0.3)	3 (0.5)	1 (0.2)	1 (0.2)	0
Cholecystitis	0	0	0	0	2 (0.3)	0	0	3 (0.5)	1 (0.2)	0	1 (0.2)	1 (0.2)
Hepatic failure	0	0	0	0	1 (0.2)	0	0	2 (0.3)	2 (0.3)	2 (0.3)	0	0
Musculoskeletal	0	2 (0.3)	1 (0.2)	0	7 (1.2)	0	1 (0.2)	8 (1.3)	0	0	2 (0.3)	0
Back pain	0	0	0	0	5 (0.8)	0	0	1 (0.2)	0	0	2 (0.3)	0
Vascular disorders	0	1 (0.2)	0	0	3 (0.5)	3 (0.5)	1 (0.2)	4 (0.7)	3 (0.5)	1 (0.2)	0	1 (0.2)
Respiratory	0	1 (0.2)	0	1 (0.2)	8 (1.3)	1 (0.2)	1 (0.2)	9 (1.5)	1 (0.2)	0	3 (0.5)	0
Influenza	0	1 (0.2)	0	0	6 (1.0)	0	1 (0.2)	4 (0.7)	0	0	0	0

age with severe e	vents (a	all CTCAE gr	ades 3 an	d 4)								
		Base	eline			Day	30*			Day 9	0*	
Events		Median	% pa	tients		Median change	% pa	tients		Median change	% pa	tients
Lvents	Ν	(range)	Grade 3	Grade 4	Ν	from baseline (range)	Grade 3	Grade 4	Ν	from baseline (range)	Grade 3	Grade 4
Total bilirubin	593	0.6	0.2	0.2	144	0.1	1.8	0.6	225	0.1	4.9	2.7
		(0.1-18.3)				(–1.0-12.8)				(-1.4-33.1)		
Albumin	591	3.7 (1.6-4.8)	1.4	0	163	-0.2 (-1.4-1.2)	1.8	0	218	-0.3 (-2.3-1.1)	4.1	0
Alkaline	592	146.0	3.0	0	166	23.0	2.3	0	228	62.0	7.8	0
phosphatase	(2	24.0-1,565.0)				(-274.0-407.0)				(-342.0-1,209.0)		
Aspartate	590	35.0	1.5	0	161	4.0	4.2	0	225	12.0	2.2	0
aminotransferase	e	(10.0-353.0)				(-62.0-428.0)				(-172.0-544.0)		
*, Based on last	labora	tory test with	in previou	us 30-day	time	e interval.						

Table S7 All-causality changes in laboratory values at baseline and change from baseline at Day 30 and 90 with corresponding percentage with severe events (all CTCAE grades 3 and 4)

N Median 95% 0 Parant ratio 95% 0 sub-groups All 606 9.0 0.0-11.1 na . Gender	Table S8 Kaplan-Meier analysis and univar	el of surviva	al by baseline ch	aracteristics					
N Median 95% 0 Parant ratio 95% 0 sub-groups All 606 9.0 0.0-11.1 na . Gender			Surviva	I, months [†]		Univariate Cox proportional hazards mode			
Gender 0.473 0.94 0.78-1.12 0.474 Female 233 9.4 8.711.4 5	Characteristic	Ν	Median	95% CI	P value	Hazard ratio	95% CI	P value between sub-groups	
Female 233 9.4 8.7-11.4 Male 373 10.0 8.9-11.2 Race 0.855 1.02 0.85-1.22 0.854 Qaucasian 398 9.5 8.9-11.2 0.855 1.02 0.85-1.22 0.854 Age 0.335 1 1.00-1.01 0.387 0.011 2.0 Age 0.039 3.50 9.011.4 0.009 1.35 1.09-1.67 0.005 COC performance status 0.009 1.35 1.09-1.67 0.005 0.001 1.73 1.45-2.08 <0.001 1 72 8.1 6.411.0 2 2.13 7.4 6.18.5 1.09-1.67 0.005 12 3.3 5.0 1.31.1 1.45-2.08 <0.001 7.3 1.45-2.08 <0.001 2 0.01 1.73 1.45-2.08 <0.001 7.3 1.45-2.08 <0.001 2 0.01 1.33 1.02 0.016 0.33 0.01 0	All	606	9.6	9.0-11.1	na				
Male37310.08.9-11.8Race	Gender				0.473	0.94	0.78-1.12	0.474	
Race 0.855 1.02 0.85-1.22 0.854 Caucasian 398 9.5 8.9-11.2	Female	233	9.4	8.7-11.4					
Caucasian 398 9.5 8.9-11.2 Non-Caucasian 208 0.512.2 Age -0.335 1 1.00-1.01 0.387 270 years 160 9.7 9.011.4 - - 270 years 160 9.7 9.011.4 - - - ECOG performance status - 0.009 ¹ 1.35 1.09-1.67 0.005 ¹ 0 168 11.2 9.11.31 - - - - - - - 0.005 ¹ 0.005 ¹ 0.005 ¹ 0.005 ¹ 0.005 ¹ 0.005 ¹ 0.007 ¹ 0.007 ¹ 0.007 ¹ 0.007 ¹ - -	Male	373	10.0	8.9-11.8					
Non-Caucasian 208 9.6 8.5-12.2 Age 0.335 1 1.00-1.01 0.387 <70 years	Race				0.855	1.02	0.85-1.22	0.854	
Age 0.335 1 1.00-1.01 0.387 <70 years	Caucasian	398	9.5	8.9-11.2					
470 years 446 9.7 9.0-11.4 270 years 100 9.3 8.0-12.1 ECOG performance status 0.009' 1.35 1.09-1.67 0.005' 0 1.12 9.1-13.1 1 72 8.1 6.4-11.0 2 14 6.0 2.3-12.2 3 5.0 1.3-11.0 Extra-hepatic metastases	Non-Caucasian	208	9.6	8.5-12.2					
indicationindicationindicationindicationECOG performance status0.0091.361.09-1.670.005016811.29.1-13.111.29.1-13.112146.02.3-12.211.31.45-2.08<0.001	Age				0.335	1	1.00-1.01	0.387	
ECOG performance status 0.009 1.35 1.09-1.67 0.005' 0 168 11.2 9.1-13.1 1 72 8.1 6.4-11.0 2 14 6.0 2.3-12.2 3 5.0 1.311.0 Extra-hepatic metastases <0.001	<70 years	446	9.7	9.0-11.4					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	≥70 years	160	9.3	8.0-12.1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ECOG performance status				0.009 ⁱ	1.35	1.09-1.67	0.005 ⁱ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		168	11.2	9.1-13.1					
335.01.3-11.0Extra-hepatic metastases<0.001	1	72	8.1	6.4-11.0					
335.01.3-11.0Extra-hepatic metastases<0.001	2	14	6.0	2.3-12.2					
Extra-hepatic metastases -0.001 1.73 1.45-2.08 <0.001 No 333 12.1 10.8-13.6 -	3	3							
No39312.110.8-13.6Yes2137.46.1-8.5 <i>In-situ</i> primary0.0170.0161.371.06-1.770.017No521009.1-11.80.0151.020.017No52788.16.0550.8210.67-1.000.055Metastases0.0550.8210.67-1.000.0550.8210.67-1.000.055Metastanous17311.29.0-13.10.001"2.651.72-4.09<0.001"Synchronous3969.38.5-10.60.001"2.651.72-4.09<0.001"Ascites	Extra-hepatic metastases				<0.001	1.73	1.45-2.08	<0.001	
Yes 213 7.4 6.1-8.5 <i>In-situ</i> primary 0.016 1.37 1.06-1.77 0.017 No 522 10.0 9.1-11.8 0.055 0.821 0.67-1.00 0.055 Metachronous 78 8.1 6.2-10.4 0.055 0.821 0.67-1.00 0.055 Metachronous 173 173 9.0 0.055 0.821 0.67-1.00 0.055 Synchronous 369 9.3 8.5-106 0.051 0.001* 0.001* Ascites - - 0.001* 0.657 0.83 0.72-4.09 <0.01*		393	12.1	10.8-13.6					
In-situ primary0.0161.371.06-1.770.017No52210.09.1-11.86.2-10.4	Yes	213		6.1-8.5					
No52210.09.1-11.8Yes788.16.2-10.4Metastases0.0550.8210.67-1.000.055Metachronous3969.38.5-10.6 $$	In-situ primary				0.016	1.37	1.06-1.77	0.017	
Yes788.16.2-10.4Metastases0.0550.8210.67-1.000.055Metachronous17311.29.0-13.10.20180.67-1.000.001"Synchronous3969.38.5-10.60.001"2.651.72-4.09 $<0.001"$ Ascites $< 0.001"$ 0.672.651.72-4.09 $<0.001"$ No5310.09.2-11.8 $< 0.001"$ $< 0.001"$ $< 0.001"$ Yes (controlled)232.40.7-22.9 < 0.683 0.68-1.010.067Yes (uncontrolled)230.48.5-11.0 < 0.683 0.68-1.010.067No4389.48.5-11.0 < 0.681 0.68-1.010.067Yes16810.48.9-13.1 < 0.801 8.6-10.1 < 0.801 No5699.69.0-11.2 < 0.001 < 0.801 < 0.801 < 0.801 No5699.69.0-11.2 < 0.001 < 0.801 < 0.801 < 0.901 RE 2 nd -line20613.010.5-14.6 < 0.001 < 0.001 < 0.001 < 0.001 RE 4 nd -line +1849.07.8-11.0 < 0.901 < 0.81 < 0.901 < 0.901 RE 1 nd -line +1849.07.2-17.1 < 0.901 < 0.901 < 0.901 < 0.901 All3513.57.2-17.1 < 0.901 < 0.901 < 0.901 < 0.901 < 0.901 RE 1 nd -line1813.57.2-17.1 < 0.90		522	10.0	9.1-11.8					
Metastases0.0550.8210.67-1.000.055Metachronous17311.29.0-13.19.0-13.19.0-10.19.09.09.09.09.09.09.09.09.09.09.09.09.001 ii 2.651.72-4.09<0.001 ii 9.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Metachronous17311.29.0-13.1Synchronous3969.38.5-10.6Ascites $< 0.001^{ii}$ 2.651.72-4.09 $< 0.001^{ii}$ No56310.09.2-11.8 $< 0.01^{ii}$ 2.651.72-4.09 $< 0.001^{ii}$ Yes (controlled)52.40.7-22.9 < 0.067 0.830.68-1.010.067No4389.48.5-11.0 < 0.067 0.830.68-1.010.067No4389.48.5-11.0 < 0.44 1.160.80-1.680.439Yes16810.48.9-13.1 < 0.44 1.160.80-1.680.439No5699.69.0-11.2 < 0.001 1.221.13-1.31 < 0.001 No5699.69.0-11.2 < 0.001 1.221.13-1.31 < 0.001 No5699.69.0-11.2 < 0.001 1.221.13-1.31 < 0.001 No5699.69.69.6 < 0.001 1.221.13-1.31 < 0.001 No5699.69.69.6 < 0.001 1.221.13-1.31 < 0.001 RE 2 rd -line20613.01.0.5-14.6 < 0.041 < 0.44 < 0.01 < 0.44 RE 1 rd -line +1588.1 $< 6.49.3$ $< 0.49.3$ $< 0.49.3$ $< 0.49.3$ $< 0.49.3$ RE 1 rd -line +15813.5 $7.2-7.1$ na < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41	Metastases				0.055	0.821	0.67-1.00	0.055	
Synchronous 396 9.3 8.5-10.6 Ascites <.0.001 ⁸ 2.65 1.72-4.09 <.0.01 ⁸ No 563 10.0 9.2-11.8 Yes (controlled) 5 2.4 0.7-22.9 Yes (uncontrolled) 23 5.5 3.6-7.4	Metachronous	173	11.2	9.0-13.1					
Ascites<0.001 ⁱⁱ 2.651.72-4.09<0.001 ⁱⁱ No56310.09.2-11.8 </td <td>Svnchronous</td> <td>396</td> <td></td> <td>8.5-10.6</td> <td></td> <td></td> <td></td> <td></td>	Svnchronous	396		8.5-10.6					
No 563 10.0 9.2-11.8 Yes (controlled) 5 2.4 0.7-22.9 Yes (uncontrolled) 23 5.5 3.6-7.4 Prior liver surgery/ablation 23 5.5 3.6-7.4 No 438 9.4 8.5-11.0 0.067 0.83 0.68-1.01 0.067 Yes 168 9.4 8.5-11.0 0.44 1.16 0.80-1.68 0.439 Yes 168 9.4 8.5-11.0 0.44 1.16 0.80-1.68 0.439 No 569 9.6 9.0-11.2 0.44 1.16 0.80-1.68 0.439 No 569 9.6 9.0-11.2 0.001 1.22 1.13-1.31 <0.001	-				<0.001 ⁱⁱ	2.65	1.72-4.09	<0.001 ⁱⁱ	
Yes (controlled) 5 2.4 0.7-22.9 Yes (uncontrolled) 23 5.5 3.6-7.4 Prior liver surgery/ablation 0.067 0.83 0.68-1.01 0.067 No 438 9.4 8.5-11.0		563	10.0	9.2-11.8					
Yes (uncontrolled) 23 5.5 3.6-7.4 Prior liver surgery/ablation 0.067 0.83 0.68-1.01 0.067 No 438 9.4 8.5-11.0 0.83 0.68-1.01 0.067 Yes 168 10.4 8.9-13.1 0.44 1.16 0.80-1.68 0.439 Prior non-surgical liver-directed procedure 0.44 1.16 0.80-1.68 0.439 No 569 9.6 9.0-11.2 1.16 0.80-1.68 0.439 Yes 37 9.9 6.5-13.9 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Prior liver surgery/ablation 0.067 0.83 0.68-1.01 0.067 No 438 9.4 8.5-11.0									
No4389.48.5-11.0Yes16810.48.9-13.1Prior non-surgical liver-directed procedure0.441.160.80-1.680.439No5699.69.0-11.29.19.19.1Yes379.96.5-13.99.19.19.19.1Prior lines of chemotherapy \sim <0.0011.221.13-1.31<0.001RE 2 nd -line20613.010.5-14.6 \sim \sim \sim \sim RE 3 rd -line +1588.16.4-9.3 \sim \sim \sim \sim \sim \sim RE 1 st -line 35 13.5 $7.2-17.1$ na \sim $<$ $<$ $<$ $<$ $<$ $<$ All3513.57.2-17.1na $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <th< td=""><td></td><td></td><td></td><td></td><td>0.067</td><td>0.83</td><td>0.68-1.01</td><td>0.067</td></th<>					0.067	0.83	0.68-1.01	0.067	
Yes16810.48.9-13.1Prior non-surgical liver-directed procedure 0.44 1.16 $0.80-1.68$ 0.439 No5699.6 $9.0-11.2$ 1.22 $1.13-1.61$ 0.001 Yes379.9 $6.5-13.9$ 0.001 1.22 $1.13-1.31$ <0.001 Prior lines of chemotherapy V 0.001 1.22 $1.13-1.31$ <0.001 RE 2 nd -line206 13.0 $10.5-14.6$ V V V RE 3 rd -line +158 8.1 $6.4-9.3$ V V V RE 1 st -line V V V V V V All35 13.5 $7.2-17.1$ na V V V <75 years18 11.9 $4.0-15.6$ V V V V	• •	438	9.4	8.5-11.0	01001	0.00	0100 1101	01001	
$ \begin{array}{c c c c c c c } Prior non-surgical liver-directed procedure & 0.44 & 1.16 & 0.80-1.68 & 0.439 \\ \hline No & 569 & 9.6 & 9.0-11.2 \\ Yes & 37 & 9.9 & 6.5-13.9 \\ Prior lines of chemotherapy & < & <0.001 & 1.22 & 1.13-1.31 & <0.001 \\ RE 2^{nd}-line & 206 & 13.0 & 10.5-14.6 \\ RE 3^{rd}-line & 184 & 9.0 & 7.8-11.0 \\ RE 4^{th}-line + & 158 & 8.1 & 6.4-9.3 \\ \hline RE 1^{st}-line & & & & & & & & & & & & & & & & & & &$									
No5699.69.0-11.2Yes379.96.5-13.9Prior lines of chemotherapy<0.001					0.44	1.16	0.80-1.68	0.439	
Yes 37 9.9 6.5-13.9 Prior lines of chemotherapy <0.001	• ·	569	9.6	9.0-11.2					
$ \begin{array}{c c c c c c c c c } Prior lines of chemotherapy & < & <0.001 & 1.22 & 1.13-1.31 & <0.001 \\ RE 2^{nd}-line & 206 & 13.0 & 10.5-14.6 \\ RE 3^{rd}-line & 184 & 9.0 & 7.8-11.0 \\ RE 4^{th}-line + & 158 & 8.1 & 6.4-9.3 \\ \hline RE 1^{st}-line & & & & & & & & & & & & & & & & & & &$									
RE 2 nd -line20613.010.5-14.6RE 3 rd -line1849.07.8-11.0RE 4 th -line +1588.16.4-9.3RE 1 st -line 0.041 All3513.57.2-17.1All3513.57.2-17.1< 75 years1811.94.0-15.611.94.0-15.6		0.	010		< 0.001	1.22	1.13-1.31	<0.001	
RE 3 rd -line1849.07.8-11.0RE 4 th -line +1588.16.4-9.3RE 1 st -line 0.041 All3513.57.2-17.1All3513.59.3-36.5>75 years1811.94.0-15.6		206	13.0	10.5-14.6					
RE 4 th -line + 158 8.1 6.4-9.3 RE 1 st -line 0.041 All 35 13.5 7.2-17.1 na <75 years									
RE 1 st -line 0.041 All 35 13.5 7.2-17.1 na <75 years 17 25.2 9.3-36.5 ≥75 years 18 11.9 4.0-15.6									
All3513.57.2-17.1na<75 years				0.0.0	0.041				
<75 years 17 25.2 9.3-36.5 ≥75 years 18 11.9 4.0-15.6		35	13.5	7.2-17 1					
≥75 years 18 11.9 4.0-15.6									
	Table S8 (continued)								

	Survival, months [†]			Univariate Cox proportional hazards model		
Ν	Median	95% CI	P value	Hazard ratio	95% CI	P value between sub-groups
			0.005"	0.84	0.75-0.95	0.006"
301	8.9	7.7-10.8				
264	9.6	8.6-11.2				
29	17.7	11.2-23.7				
10	19.0	9.3-25.4				
2	28.1	26.4-29.8				
			<0.001	2.4	1.74-3.31	<0.001
58	18.3	15.8-23.1				
246	9.2	8.1-9.9				
			< 0.001	11.5	6.98-18.93	<0.001
388	12.8	10.8-13.6				
148	6.5	5.7-8.1				
22	6.0	3.6-9.1				
			<0.001	1	1.00-1.00	<0.001
215	13.6	12.2-16.3				
215	7.4	6.6-8.5				
			<0.001	1.43	1.31-1.56	<0.001
556	10.4	9.3-11.9				
37	3.8	2.5-7.4				
			<0.001	0.42	0.36-0.50	<0.001
392	13.0	11.6-13.9				
199	6.3	5.4-7.1				
			< 0.001	1	1.00-1.00	<0.001
241	15.7	13.9-17.7				
351	7.1	6.3-8.1				
			0.117	1	1.00-1.00	0.009
409	10.8	9.0-12.2				
175	9.1	8.2-9.9				
			< 0.001	1	1.00-1.00	0.009
296	13.9	12.2-15.6				
294	7.2	6.3-8.7				
			0.041	1.2	0.90-1.59	0.210
569	9.6	9.0-11.2				
26	7.1	4.7-12.2				
			< 0.001	0.86	0.82-0.90	<0.001
356	12.2	10.6-13.6				
238	7.6	6.4-9.0				
			0.499	1.05	1.02-1.07	<0.001
EE0	9.4	8.9-11.0				
553	9.4	0.3-11.0				
	301 264 29 10 2 58 246 388 148 22 215 215 215 215 215 215 215 215 215	N Median 301 8.9 264 9.6 29 17.7 10 19.0 2 28.1 58 18.3 246 9.2 388 12.8 148 6.5 22 6.0 215 13.6 215 13.6 215 7.4 556 10.4 37 3.8 392 13.0 199 6.3 241 15.7 351 7.1 409 10.8 175 9.1 296 13.9 294 7.2 569 9.6 26 7.1 356 12.2 238 7.6	N Median 95% Cl 301 8.9 7.7-10.8 264 9.6 8.6-11.2 29 17.7 11.2-23.7 10 19.0 9.3-25.4 2 28.1 26.4-29.8 58 18.3 15.8-23.1 246 9.2 8.1-9.9 388 12.8 10.8-13.6 148 6.5 5.7-8.1 22 6.0 3.6-9.1 215 13.6 12.2-16.3 215 7.4 6.6-8.5 556 10.4 9.3-11.9 37 3.8 2.5-7.4 392 13.0 11.6-13.9 199 6.3 5.4-7.1 392 13.0 11.6-3.8.1 409 10.8 9.0-12.2 375 7.1 6.3-8.7 296 13.9 12.2-15.6 294 7.2 6.3-8.7 569 9.6 9.0-11.2 26 <t< td=""><td>NMedian95% ClP value0.005^{m}0.005^{m}301$8.9$7.7-10.82649.6$8.6-11.2$2917.7$11.2-23.7$1019.0$9.3-25.4$228.1$26.4-29.8$228.1$26.4-29.8$228.1$26.4-29.8$29.2$8.1-9.9$5818.3$15.8-23.1$2469.2$8.1-9.9$26.0$3.6-9.1$2469.2$8.1-9.9$26.0$3.6-9.1$226.0$3.6-9.1$226.0$3.6-9.1$226.0$3.6-9.1$21513.6$12.2-16.3$2157.4$6.6-8.5$301$11.6-13.9$37$3.8$$2.5-7.4$39213.0$11.6-13.9$199$6.3$$5.4-7.1$39213.0$11.6-13.9$199$6.3$$5.4-7.1$40910.8$9.0-12.2$1759.1$8.2-9.9$29613.9$12.2-15.6$2947.2$6.3-8.7$40.001$569$$9.6$9.6$9.0-11.2$267.1$4.7-12.2$267.1$4.7-12.2$267.1$4.7-12.2$267.1$4.7-12.9$35612.210.6-13.62387.6$6.4-9.0$</td><td>NMedian95% ClP valueHazard ratio0.005^{HI}0.843018.97.7-10.80.842649.68.6-11.210.122917.711.2-23.710.121019.09.3-25.410.12228.1264-29.810.12228.1264-29.810.11.538818.315.8-23.110.1538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.311.2-16.311.621513.612.2-16.311.4355610.49.3-11.91.4355610.49.3-11.91.4355610.49.3-11.91.4339213.011.6-13.91.431996.35.4-7.11.1440910.89.0-12.21.14140910.89.0-12.21.1415713.9-17.73517.13517.16.3-8.11.121759.18.2-9.91.122667.14.7-12.21.122667.14.7-12.21.1226612.210.6-13.61.226612.210.6-13.61.1226612.210.6-13.61.1527612.210.6-13.6</td><td>N Median 95% Cl P value Hazard ratio 95% Cl 301 8.9 7.7-10.8 0.005" 0.84 0.75-0.95 301 8.9 7.7-10.8 264 9.6 8.6-11.2 29 17.7 11.2-23.7 10 19.0 9.3-25.4 28.1 26.4-29.8 58 18.3 15.8-23.1</td></t<>	NMedian95% ClP value 0.005^{m} 0.005^{m}301 8.9 7.7-10.82649.6 $8.6-11.2$ 2917.7 $11.2-23.7$ 1019.0 $9.3-25.4$ 228.1 $26.4-29.8$ 228.1 $26.4-29.8$ 228.1 $26.4-29.8$ 29.2 $8.1-9.9$ 5818.3 $15.8-23.1$ 2469.2 $8.1-9.9$ 26.0 $3.6-9.1$ 2469.2 $8.1-9.9$ 26.0 $3.6-9.1$ 226.0 $3.6-9.1$ 226.0 $3.6-9.1$ 226.0 $3.6-9.1$ 21513.6 $12.2-16.3$ 2157.4 $6.6-8.5$ 301 $11.6-13.9$ 37 3.8 $2.5-7.4$ 39213.0 $11.6-13.9$ 199 6.3 $5.4-7.1$ 39213.0 $11.6-13.9$ 199 6.3 $5.4-7.1$ 40910.8 $9.0-12.2$ 1759.1 $8.2-9.9$ 29613.9 $12.2-15.6$ 2947.2 $6.3-8.7$ 40.001 569 9.6 9.6 $9.0-11.2$ 267.1 $4.7-12.2$ 267.1 $4.7-12.2$ 267.1 $4.7-12.2$ 267.1 $4.7-12.9$ 35612.210.6-13.62387.6 $6.4-9.0$	NMedian95% ClP valueHazard ratio 0.005^{HI} 0.843018.97.7-10.80.842649.68.6-11.210.122917.711.2-23.710.121019.09.3-25.410.12228.1264-29.810.12228.1264-29.810.11.538818.315.8-23.110.1538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.810.8-13.611.538812.311.2-16.311.621513.612.2-16.311.4355610.49.3-11.91.4355610.49.3-11.91.4355610.49.3-11.91.4339213.011.6-13.91.431996.35.4-7.11.1440910.89.0-12.21.14140910.89.0-12.21.1415713.9-17.73517.13517.16.3-8.11.121759.18.2-9.91.122667.14.7-12.21.122667.14.7-12.21.1226612.210.6-13.61.226612.210.6-13.61.1226612.210.6-13.61.1527612.210.6-13.6	N Median 95% Cl P value Hazard ratio 95% Cl 301 8.9 7.7-10.8 0.005" 0.84 0.75-0.95 301 8.9 7.7-10.8 264 9.6 8.6-11.2 29 17.7 11.2-23.7 10 19.0 9.3-25.4 28.1 26.4-29.8 58 18.3 15.8-23.1

P value for continuous variables by one-way ANOVA, P values for dichotomous variables by Fisher's exact test, and P value for nominal categorical variables by Chi-Square general association. [†], Median survival calculated by Kaplan-Meier analysis; ⁱ, P value: ECOG ps 0 *vs*. 1 *vs*. 2-3; ⁱⁱ, P value: ascites (not controlled) *vs*. ascites (controlled) or none; ⁱⁱⁱ, P value: RE procedures 1 *vs*. 2 *vs*. 3-5; Cl, confidence interval; na, not applicable; HR, hazard ratio.

Table S9 Multivariate analysis of significant single-vector prognostic indicators [†]						
Variable	Hazard ratio (95% CI)	P value				
All Patients (N=606)						
Tumor-to-target-liver ratio (%)	3.36 (1.76-6.39)	<0.001				
Extra-hepatic metastases	1.51 (1.22-1.86)	<0.001				
Albumin (mg/dL)	0.65 (0.53-0.80)	<0.001				
Aspartate aminotransferase (U/L)	1.01 (1.00-1.01)	<0.001				
Alkaline phosphatase (U/L)	1.00 (1.00-1.00)	<0.001				
White blood cell count	1.03 (1.00-1.06)	0.024				
Number of lines of prior chemotherapy	1.10 (1.01-1.91)	0.029				
Ascites (not controlled) vs. ascites (controlled) or none	1.63 (1.00-2.65)	0.049				
Sub-set with known ECOG performance status (N=257)						
Number of lines of prior chemotherapy	1.28 (1.12-1.45)	<0.001				
Albumin (mg/dL)	0.62 (0.46-0.84)	0.002				
EHD	1.57 (1.16-2.13)	0.004				
Prior lines of chemotherapy	1.28 (1.12-1.45)	<0.001				
Aspartate aminotransferase (U/L)	1.01 (1.00-1.01)	0.003				
Albumin (mg/dL)	0.62 (0.46-0.84)	0.002				
Alkaline phosphatase (U/L)	1.00 (1.00-1.00)	0.010				
Creatinine (mg/dL)	1.76 (1.09-2.84)	0.022				
Hemoglobin (g/dL)	0.92 (0.84-1.00)	0.038				

[†], Model selection is by best subsets approach using input variables that are statistically significant in the univariate Kaplan-Meier estimates and Cox proportional hazards model (P<0.05). Statistically significant variables by univariate Kaplan-Meier or Cox proportional hazards models were candidate variables for the multivariate model.