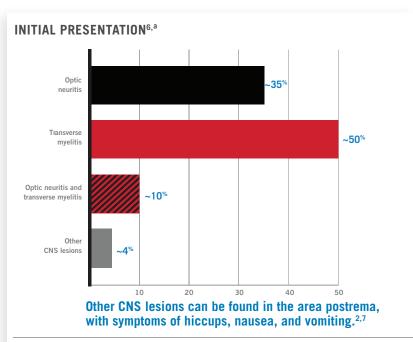
AFTER NMOSD ATTACKS, SHE MAY NEVER BE THE SAME¹

COMPLEMENT IS A PRINCIPAL CAUSE OF THIS DEVASTATION

Aquaporin-4 immunoglobulin G positive (AQP4-IgG+) Neuromyelitis Optica Spectrum Disorder (NMOSD) is a relapsing autoimmune disease that primarily affects the optic nerve and spinal cord.^{2,3}

EVERY NMOSD ATTACK* MATTERS

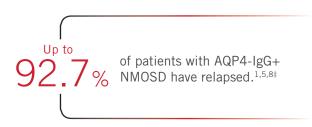

FOR THE MAJORITY OF PATIENTS WITH NMOSD, RELAPSE IS INEVITABLE^{1,4}

ATTACKS CAN BE UNPREDICTABLE, SEVERE, AND RECURRENT^{1,4,5}

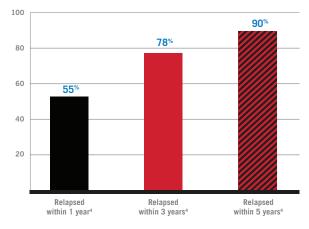
- Relapses can cause permanent, cumulative disability, including blindness and paralysis, and some relapses can even lead to premature death^{1,4,5}
- Initial presentation of NMOSD varies depending on the location of neural damage; however, an attack on the optic nerves or spinal cord typically occurs first⁶

76%

of patients **did not fully recover** from the first myelitis or optic neuritis attack.^{1†}


^aBased on a 5-year study of medical records from 187 patients with NMOSD from 3 large US medical centers.⁶

*In describing NMOSD, the words "attack" and "relapse" have been used interchangeably throughout this piece.


Retrospective study based on the German Neuromyelitis Optica Study Group (NEMOS) registry that evaluated 175 Caucasian patients with NMOSD (defined by Wingerchuk et al 2006) and known AQP4-IgG antibody status.

NMOSD RELAPSES ARE UNPREDICTABLE AND OFTEN RECURRENT^{1,5,8}

• Relapses often result in permanent disability

RATE OF RELAPSE OVER TIME IN PATIENTS WHO DEVELOP A RELAPSING COURSE (N=48)^{4,a}

^aTwo-part study (retrospective from 1950 to 1993 and prospective from 1993 to 1997) based on a review of medical records from the Mayo Clinic that evaluated 48 patients with relapsing NMOSD; mean disease duration at last follow-up was 7.7 years.⁴

ⁱFrom a 2009 to 2011 retrospective study of the German NEMOS database, which included 137 AQP4-IgG+ NMOSD patients with a median disease duration of 60 months.¹

THE CRITICAL DIFFERENCES BETWEEN NMOSD AND MS

THE MRI DIFFERENCES IN NMOSD AND MS

of patients with NMOSD were misdiagnosed with MS before AQP4-IgG testing.^{1*}

- The wrong diagnosis of multiple sclerosis (MS) became less common after AQP4-IgG testing became commercially available in 2005 (20% vs 54.2% before 2005; *P*<0.007)¹*
- Even after 2005, 1 in 5 patients continued to be misdiagnosed^{1*}

	NMOSD	MS
IMPACT		
Relapse-dependent disability	Relapses directly lead to cumulative disability	Largely independent of relaps
Median time to disability	12 years to EDSS 6	23.1 years to EDSS 6
DIAGNOSTIC CHARACTER	ISTICS	
ON	Common—severe	Common
тм	Common—characterized by longitudinal lesions ^a	Common
MRI	Longitudinally extensive lesions visible	No evidence of longitudinal lesions
CSF	Oligoclonal bands uncommon	Oligoclonal bands common
PATHOLOGY		
AQP4-IgG+	Yes (present in 73% of patients)	No (0% tested positive)
Complement mediated	Yes	No
Primary site of damage	Astrocytes	Oligodendrocytes and myelin sheath

Abbreviations: CSF, cerebrospinal fluid; EDSS, Expanded Disability Status Scale; ON, optic neuritis; TM, transverse myelitis.

^aShort lesions do not preclude a diagnosis of NMOSD.¹⁹

*Retrospective study based on the German NEMOS group registry of 175 patients with NMOSD and known AQP4-IgG antibody status; an expert panel of NEMOS members reviewed all cases from August 2009 to August 2011.¹

NEURAL DAMAGE IS VISIBLE ON MRIs¹⁹

NMOSD

Longitudinally extensive transverse myelitis, characteristic of NMOSD, extending into the area postrema

Reprinted with permission from *Radiographics*, 2018;38(1):169-193. ©RSNA.

NMOSD

Extensive bilateral gadoliniumenhancing lesions at the posterior portion of the optic nerves (arrows)

Reprinted with permission from *Radiographics*, 2018;38(1):169-193. ©RSNA.

MS

Ovoid and longitudinally short lesions typical of MS myelitis Reprinted with permission from *Radiographics*, 2018;38(1):169-193. ©RSNA.

MS

Unilateral and short-length involvement of the right intraorbital optic nerve (arrows), showing the typical pattern of MS

Reprinted with permission from *Radiographics*, 2018;38(1):169-193. ©RSNA.

CONFIRM NMOSD BEFORE THE NEXT RELAPSE

DIAGNOSING NMOSD INVOLVES MULTIPLE ASPECTS

2015 IPND DIAGNOSTIC CRITERIA FOR PATIENTS WITH AQP4-IgG+ NMOSD²⁰

AT LEAST 1 CORE CLINICAL CHARACTERISTIC

- Optic neuritis
- Acute myelitis
- Area postrema syndrome
- Acute brain stem syndrome
- Symptomatic narcolepsy or acute diencephalic clinical syndrome with NMOSD-typical diencephalic MRI lesions
- Symptomatic cerebral syndrome with NMOSD-typical brain lesions

POSITIVE TEST FOR AQP4-IgG EXCLUSION OF ALTERNATIVE DIAGNOSES, SUCH AS MS, SARCOIDOSIS, OR NEOPLASM

ر 73%

of NMOSD cases have AQP4-IgG antibodies present.¹⁶ AQP4-IgG antibodies are not present in MS cases.^{10,17}

CELL-BASED ASSAY IS THE PREFERRED METHOD OF TESTING^{20,21}

- ELISA testing could miss some of your most severe patients
- The likelihood of having a false-negative result with ELISA is between 1.5 AND 15 TIMES GREATER when compared to the Mayo Clinic cell-binding assay

FALSE NEGATIVES CAN HAPPEN; IF SIGNS POINT TO NMOSD, A RETEST IS RECOMMENDED^{20,21}

Common reasons include:

- Patient recovering from relapse
- Patient on immunosuppressant therapies
- Less accurate testing method was used

Abbreviation: IPND, International Panel for Neuromyelitis Optica Diagnosis.

MEDICAL HISTORY AND PHYSICAL EXAM²²

- > Perform detailed medical history, paying special attention to:
 - Brain stem symptoms
 - Neuropathic pain
 - Painful tonic spasms

LABORATORY TESTS^{20,22}

- > Blood work
- > CSF diagnostics
- > Test for serum AQP4-IgG antibodies
 - Essential and most important test in the diagnosis of NMOSD
 - Rules out other infections/diseases

ELECTROPHYSIOLOGY ANALYSIS²²

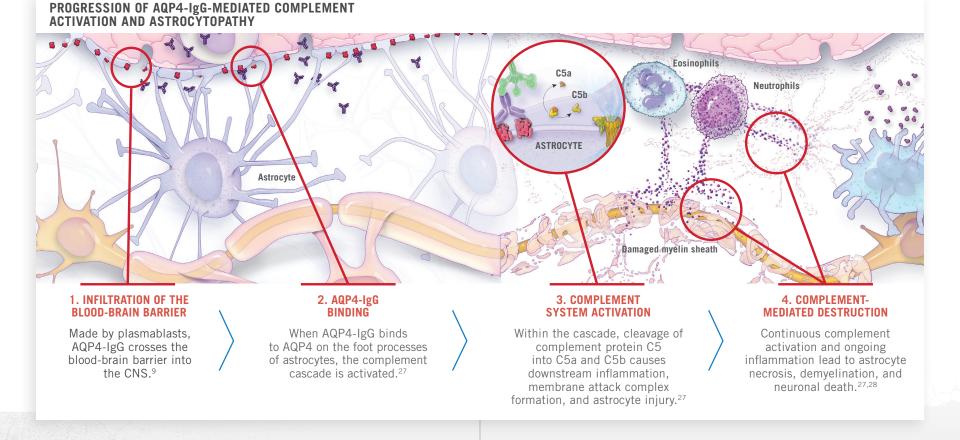
- > Visual evoked potentials
- > Median and tibial somatosensory evoked potentials
- > Motor evoked potentials

IMAGING STUDIES²²

- > MRI
 - Image entire CNS
 - Central longitudinal spinal cord lesions are typical of NMOSD
- > Optical coherence tomography

A positive test for AQP4-IgG antibodies is the most important component of the NMOSD diagnostic workup.²²

THE COMPLEMENT CASCADE IS A KEY CAUSE OF AQP4-IgG+ NMOSD


THE DEVASTATING CONSEQUENCE OF THE COMPLEMENT CASCADE

THE COMPLEMENT CASCADE, OR COMPLEMENT PATHWAY, IS A VITAL COMPONENT OF THE BODY'S **IMMUNE SYSTEM^{23,24}**

- Following injury or infection, complement acts quickly to detect, destroy, and eliminate microbes or cellular debris²⁵
- Imbalances in the activation or regulation of the complement pathway are implicated in autoimmune diseases²⁶

COMPLEMENT ACTIVATION RESULTS IN ASTROCYTOPATHY, INFLAMMATION, AND SUBSEQUENT DEMYELINATION AND **NEURONAL DEATH**^{2,27,28}

- The complement cascade is activated by AQP4-IgG binding. This leads to the cleavage of C5²⁷
- C5b initiates membrane attack complex formation on the astrocyte membrane and recruits and activates neutrophils²⁷
- C5a preactivated neutrophils provide an inflammatory microenvironment²⁷

AL FXIDN

AN NMOSD ATTACK CAN LEAD TO IRREVERSIBLE DISABILITY

AN NMOSD ATTACK CORRELATES WITH A HIGH DEGREE OF BURDEN

RATES OF VISUAL DISABILITY ARE HIGH⁸

At 5 years after onset:

4<u>1</u>%

of seropositive patients were expected to be legally blind in at least 1 eye and 9% to be legally blind in both eyes.^{8*}

PAIN AND PARALYSIS CAN PREVENT MOBILITY⁸

At 5 years after onset*:

More than 1 in 5 (22%) patients with AQP4-IgG+ NMOSD would **require a walker** (EDSS 6).

Nearly 1 in 11 (8%) patients with AQP4-IgG+ NMOSD would require a wheelchair (EDSS 8).

76% of patients reported pain and discomfort, which can prevent mobility.^{29†}

*Based on Kaplan-Meier analyses from a retrospective study of 140 patients with AQP4-IgG+ NMOSD identified from Mayo Clinic records from 2005 to 2011.8

[†]Based on a study of patients with NMOSD (N=21, with an average disease duration of 8.2 years).²⁹

EMERGENCY ROOM (ER) VISITS AND INPATIENT HOSPITAL CARE ARE COMMON³⁰

35% to 60%

of patients **required an ER visit,** and many had multiple visits.[‡]

2.8 TO 5.2 AVERAGE number of ER visits per patient.

22% to 54%

of patients required inpatient admission.*

7.8 TO 9.6 AVERAGE

number of days spent in the hospital per admission.

FEAR OF A FUTURE ATTACK CAN TAKE A HEAVY EMOTIONAL TOLL²⁹

The majority of patients with NMOSD experienced psychological consequences.

of patients reported having **anxiety and/or depression** (EQ-5D).[§]

¹Based on a retrospective study of NMO patients (N=1349, of whom 134 had highly active NMO with \geq 2 relapses in 12 months) that evaluated healthcare use within 12 months of a patient's first NMO encounter (index date) in a US administrative claims database. Respective numbers in the non-NMO control group (N=670) were 9.70% (of patients with ER visits), 0.49 (mean number of ER visits), 4.0% (of patients with inpatient admission), and 4.49 (average number of days/admission).³⁰

⁶Based on a study of NMOSD patients (N=21, with an average disease duration of 8.2 years).²⁹

EVERY RELAPSE MATTERS

IN AQP4-IgG+ NMOSD, COMPLEMENT ACTIVATION IS A FUNDAMENTAL CAUSE OF RELAPSE²⁷

AQP4-IgG BINDING ON ASTROCYTES ACTIVATES THE COMPLEMENT SYSTEM¹⁰

COMPLEMENT ACTIVATION RESULTS IN C5 CLEAVAGE, INFLAMMATION, FORMATION OF THE MEMBRANE ATTACK COMPLEX, AND INJURY TO ASTROCYTES²⁷

ASTROCYTE INJURY AND LOSS LEADS TO NEURONAL DESTRUCTION³¹

LEARN ABOUT THE DESTRUCTION COMPLEMENT CAN CAUSE AT EveryAttackMatters.com

References:

Jarius S, Ruprecht K, Wildemann B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. *J Neuroinflammation*. 2012;9:14.2. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. *Lonext Neurol*. 2007;6(9):805-815.3. Soltys J, Liu Y, Ritchie A, et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. *J Clin Invest*. 2019;129(5):2000-2013. 4. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The Clinical course of neuromyelitis optica. *J Clin Invest*. 2019;129(5):2000-2013. 4. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The Clinical course of neuromyelitis aguaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. *Brain*. 2012;135(6):6):1834-4 antibody-positive patients with neuromyelitis optica. Spectrum disorders. *Nanob Clini Neurol.* 2016;133:377-403. 8. Jiao Y, Fryer JP, Lennon VA, et al. Updated estimate of AQP4+IgG serostatus and disability outome in neuromyelitis optica. *Neurology*. 2013;81(14):1197-1204. 9. Pittock SJ, Luccinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. *Ann N Y Acad Sci.* 2016;1366(1):20-39.
Nawachi I, Lassmann H. Neurodgeneration in multiple sclerosis and neuromyelitis optica. *J Neurol Neurosurg Psychiatry*. 2017;88(2):137-145. 11. Kim SM, Kim SJ, Lee HJ, Kuroda H. Palace J, Fujihara K. Differnitial diagnosis of neuromyelitis optica spectrum disorder and multiple sclerosis and neuromyelitis optica spectrum disorder and multiple sclerosis and neuromyelitis optica. 2004;9:834-840.15. Tatekawa H, Sakamoto SJ, 401(5357-375-379. 13. Kim H, Park KA, Oh SY, Min JH, Kim BJ. Association of optic neuritis with neuromyelitis optica spectrum disorders and multiple sclerosis: an unit-institutional study in Japan. *Am J Neurotolio*.

Alexion® is a registered trademark of Alexion Pharmaceuticals, Inc. Copyright © 2019, Alexion Pharmaceuticals, Inc. All rights reserved. US/UNB-N/0031 07/19

