REM SLEEP BEHAVIOR DISORDER

Prodromal Synucleinopathy and Beyond

Erik K. St. Louis, M.D., M.S.
Professor of Neurology and Medicine
DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIP(S) WITH INDUSTRY

<table>
<thead>
<tr>
<th>Nature of relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Grants</td>
<td>Sunovion, Inc.</td>
</tr>
<tr>
<td>Research Grant</td>
<td>Spark, Inc.</td>
</tr>
</tbody>
</table>

REFERENCES TO OFF-LABEL USAGE(S) OF PHARMACEUTICALS OR INSTRUMENTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Therapeutic Use</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melatonin, Clonazepam</td>
<td>Treatment of RBD</td>
<td>Several</td>
</tr>
</tbody>
</table>
ERIK K. ST. LOUIS, M.D., M.S.

Professor of Neurology and Medicine
Consultant in Neurology and Medicine
Director, Mayo Sleep Behavior and Neurophysiology Research Laboratory
Head, Sleep Neurology

Mayo Clinic College of Medicine and Science, Rochester, MN USA

Research Chair, Mayo Clinic Southwest Wisconsin, La Crosse, WI USA
COPYRIGHT

Unauthorized duplication, distribution or exhibition of this program is an infringement of United States and International copyright laws.

Title 17, U.S. Copyright Code
LEARNING OBJECTIVES

Upon conclusion of this activity, participants should be able to:

• Summarize the spectrum of clinical presentations and current diagnostic standards for isolated REM sleep behavior disorder (RBD).

• Recognize REM sleep without atonia (RSWA).

• Describe the strong association of iRBD with synucleinopathy neurodegeneration.

• Consider ethical dimensions of RBD prognostic counseling.

• Utilize symptomatic therapies for injury prevention for RBD.
SPECTRUM OF CLINICAL PRESENTATIONS AND CURRENT DIAGNOSTIC STANDARDS FOR ISOLATED REM SLEEP BEHAVIOR DISORDER (RBD)
ISOLATED (IDIOPATHIC) REM SLEEP BEHAVIOR DISORDER

• Dream enactment – complex vocal and motor behaviors during sleep – often violent, potentially injurious

• REM Sleep Atonia Loss
 • (aka REM Sleep without Atonia, RSWA) - PSG signature

• ICSD-3 standards require both elements, or recorded complex vocal/motor behavior during REM sleep during PSG

RBD: TYPICAL CLINICAL PRESENTATIONS AND CAUSES/ASSOCIATIONS

• Isolated (Idiopathic) RBD in Older Adults
 • *Prodromal synucleinopathy in most* - Strong association with synucleinopathy with concurrent onset or later development of a defined neurodegenerative disorder
 • HR for MCI/PD 2.2 (CI 1.9-3.9)

• RBD in Younger Adults
 • *Psychiatric disease and antidepressant*
 • Narcolepsy
 • Autoimmunity
 • Lesional RBD
CONVERSION RISK IN MAYO CLINIC IRBD COHORT (N=392): INFLUENCE OF AGE

What is young RBD? 50 yrs
97% sens
34% spec

Best age predicting conversion 67 yrs
80% sens
71% spec
(AUC 0.79)

Alexandres, McCarter, Boeve, Silber, St. Louis, 2023
70 year old male severe RBD
RBD: AN INJURIOUS PARASOMNIA

- 77 yo man *dreamt he was catching a punt*, dove from bed and struck head.
 - Large bilateral SDHs required evacuation.
 - 5 years later > DLB.
- Injury: in 55%; 11% serious
 - *iRBD diagnosis* (OR=6.8, *p*=0.016).
 - *Dream recall* (OR=7.5, *p*=0.03).
 - *Falls* (*p*=0.03).
- Treatment: melatonin 3-12 mg, clonazepam 0.25-2.0 mg

(Patient video)
HOW FREQUENT IS RBD IN THE GENERAL POPULATION?

1. 1-2%
 - 25%
2. 2-5%
 - 0%
3. 10-30%
 - 50%
4. 30-90%
 - 0%
5. It depends %
 - 25%
How Frequent is RBD in the general population?

A. 1-2%
B. 2-5%
C. 10-30%
D. 30-90%
E. It depends %

Answer: E (or A, for general population). The general population RBD prevalence has been estimated as being closest to 1-2%. The prevalence of RBD is enriched in sleep clinic populations (5%), and in various synucleinopathy populations may vary from estimates of 30-90%.

REM-SLEEP BEHAVIOR DISORDER: EPIDEMIOLOGY

- Idiopathic/Isolated RBD
 - Initial Estimate (telephone survey): 0.5%
 - Swiss and Korean general populations: 1.06%, 2.01%
 - Enriched populations
 - Sleep clinics: 4.5%
 - 43% with RBD as a secondary/incidental complaint
 - Older adults/elderly
 - Probable RBD in older adults (>60 years): 4.6-7.7%
 - Elderly 70-99 years old: 6.8-13%

- Symptomatic RBD
 - In PD: 30-46%-considered specific marker for Prodromal PD
 - In DLB: 80-85% in PSG series
 - In MSA: 88% in a recent metaanalysis

RBD: MAYO SLEEP QUESTIONNAIRE

• Have you ever seen the patient appear to “act out his/her dreams” while sleeping? (punched or flailed arms in the air, shouted or screamed)

 • Sensitivity 97-100%
 • Specificity 69-95%

http://www.mayoclinic.org/sleep-disorders/research.html

ROCHESTER EPIDEMIOLOGY PROJECT
RBD PREVALENCE STUDY

Frequency of Self Endorsed DEB

1.00 -
0.75 -
0.50 -
0.25 -
0.00 -

DEB
No DEB

14.2%

486 Total responders

69 of 486 (14.2%) self-reported having been told they have DEB

Frequency of Bedpartner Only Endorsed DEB

1.00 -
0.75 -
0.50 -
0.25 -
0.00 -

DEB
No DEB

1.8%

7 out of 383 (1.8%) had bedpartners that disagreed with the subjects self-report of No DEB
(Subject said No for DEB, bedpartner said Yes for DEB)

Gossard, Feemster, McCarter, Timm, and St. Louis 2022
REM SLEEP WITHOUT ATONIA (RSWA):
THE NEUROPHYSIOLOGIC SIGNATURE OF REM SLEEP BEHAVIOR DISORDER
TOP: REM SLEEP WITHOUT ATONIA (RSWA; RED ARROWS)

BOTTOM: NORMAL REM ATONIA (ALSO SEE BLUE ARROW)
POLYSOMNOGRAPHY AND REM SLEEP WITHOUT ATONIA (RSWA)

• 3 Types:
 • **Phasic** – 2-4 x background, 0.1-4.9 sec
 • *Direct burst duration aids RBD diagnosis*
 • **Tonic** – 2 x background, >15s. (1/2) of 30 s. epoch
 • **Any** – 0.5-14.9 sec

• **Mini-epoch scoring** – +phasic burst in 3 s.

• **Muscle Activity % / Indices / Densities**
 • # +phasic-any / # tot REM miniepochs

RSWA PHASIC BURST SCORING:
0.1 - 4.9 SEC BURSTS EXCEEDING 2-4X BACKGROUND AMPLITUDE

Whole screen = 15 seconds (5 - 3 s. Mini-Epochs)

iRBD (4 Limbs) RSWA Thresholds

- *N*=40 adults, 66.5 ± 7.7 yrs

- Optimized RSWA percentages:
 - SM phasic, any 6.5, 6.5%
 - SM Tonic 0.50
 - Phasic *duration* ~ 0.72 sec.
 - RAI = 0.88

- SM/FDS any 15.1%

- AT phasic, any% both 7.7%

- Combined SM/AT phasic/any% 16.5, 21.0%

LeClair-Visonneau et al, 2022 (manuscript)
Normative RSWA

N=118 adults, 18-90 yrs

- **Older men** - greatest RSWA - mirrors RBD/LBD biology
- **Defined Isolated RSWA thresholds** - common!
 - 14% met RBD threshold
 - 25-32% exceeded cohort/age-sex 95%iles
- 95th centile percentages:
 - SM phasic, any 8.6, 9.1%
 - SM tonic 0.99
 - AT phasic, any% both 17%
 - Combined SM/AT phasic, any% 22.3, 25.5%

Feemster et al, *SLEEP* 2019;42(10).
REM-SLEEP (WITHOUT) ATONIA SCORING

• No current well-accepted diagnostic standards

• Evolving RSWA Diagnostic Standards

 • **Visual/Manual scoring standards**
 • *Phasic/Any SM > 10% ‘phasic/any’ abnormal*
 • *Combined Limbs:*
 • SM+Bil FDS > 15%, OR
 • SM+AT ‘any’ > 15%, OR
 • SM+FDS+AT > 25%

 • **Automated standards** (RAI/Ferri, SINBAR, Meyer, STREAM, Frandsen, Kempfner)
 • RAI/RSA <0.85-0.9 (where 0=complete loss of, and 1=complete preserved atonia)

RSWA: ASSOCIATIONS WITH SYNUCLEINOPATHY SEVERITY AND OUTCOMES

• Associated with presumed SYN vs. TAU (n=138)

• RSWA severity (esp. SM tonic%) in IRBD predicts phenoconversion to PD (n=60)

• RSWA has greater association with PD than ET (n=73)

• RSWA independently associated with greater PD severity (H&Y stage \geq 3.0) and symmetrical/akinetict-rigid vs. Tremor dominant phenotypes; also, poorer sleep quality, cognitive performance, and HRQoL

• Tonic RSWA associated with gait freezing PD phenotype, implicating common pathophysio. in dorsal pontine tegmentum

• In isolated RSWA; 7-14% develop iRBD, 71% have neurodegenerative markers

SYN VS. NSYN COGNITIVE AND MOTOR SYNDROME

n=138

SYN > TAU RSWA in SM muscle

MSA greater than all other subgroups

o/w no effect of parkinsonism/cognitive phenotype

even without RBD symptoms, RSWA was greater in SYN groups
CURRENT EVIDENCE FOR STRONG ASSOCIATION BETWEEN RBD AND SYNUCLEINOPATHY NEURODEGENERATION
MODEL OF RBD AND SYNUCLEINOPATHY

- **Isolated RBD develop:**
 - Cognitive Dysfunction (naMCI, DLB)
 - Motor (PD)
 - Autonomic (MSA)

- Progression variable

WHAT IS THE APPROXIMATE FREQUENCY OF PHENOCONVERSION TO PD OR DLB IN IDIOPATHIC/ISOLATED RBD FOLLOWING CONFIRMATORY POLYSOMNOGRAPHY?

1. 10-30% 16.67%
2. 30-50% 33.33%
3. 50-70% 16.67%
4. 70-75% 16.67%
5. 75-90% 16.67%
What is the approximate frequency of phenoconversion to PD or DLB in idiopathic/isolated RBD following confirmatory polysomnography?

A. 10-30%
B. 30-50%
C. 50-70%
D. 70-75%
E. 75-90%

Answer: D. The largest study to date has suggested an estimated rate of phenoconversion in iRBD patients to PD or DLB (or rarely, MSA) to be approximately 73.5%. Other prior studies have suggested the broad range may vary between 40% to 90%.

ISOLATED RBD (N=1,280): PHENOCONVERSION RISK

- Overall risk of conversion 6.25% per year
- 3 yrs: 17.9%
- 5 yrs: 31.3%
- 10 yrs: 60.2%
- 12 yrs: 73.5%

EVIDENCE THAT MOST ISOLATED RBD IS PRODROMAL LEWY BODY DISEASE

• Longitudinal cohort studies – 74-92% meet MDS criteria for prodromal PD
• Neurodegenerative markers in living patients
• Pathological specimens in living RBD patients – synuclein in peripheral tissues
• Autopsy studies – most RBD patients on post-mortem examination have a synucleinopathy

ISOLATED RBD: NEURODEGENERATIVE MARKERS HAVE PROGNOSTIC IMPORTANCE
PHENOCONVERSION RISK FACTORS FOR OVERT SYNUCLEINOPATHY (PD, DLB)

- Abnormal olfaction (HR 2.6, $P<0.001$)
- Abnormal quantitative motor testing (HR 3.5, $P<0.001$)
 - Motor symptoms (HR 2.6, $P<0.001$)
 - Subtle motor signs (HR 2.0, $P<0.001$)
- Constipation (HR 1.6, $P=0.003$)
- Increased RSWA (HR 1.6, $P=0.04$)
- Abnormal DAT scan (HR 3.2, $P<0.001$)

RBD AND DATSCAN

- DaTscan: Ioflupane (I-123) binds presynaptic DA receptors in striatum

Normal:

Abnormal: reduced tail,
RBD AND ALPHA-SYNUCLEIN PATHOLOGY

• Autopsy
 • 160/170 (94%) RBD at autopsy proven synucleinopathy (DLB most common)
 • 2 Idiopathic RBD cases: 15-20 year history lacking other obvious pathology
 • Lewy body pathology in subceruleus (sublateral dorsal), and pedunculopontine nuclei

• iRBD Patient Pathology: Synuclein found in submandibular, colonic mucosa, gonadal, skin nerve tissues

PROGNOSTIC COUNSELING IN RBD
RBD PROGNOSTIC COUNSELING:
WHAT SHOULD/DO WE TELL PATIENTS?

• Prognostic counseling practice is variable, only 50% of Mayo provider discussions documented, predominantly by neurologists.

• In a survey of 44 iRBDSG and NAPS providers: 93.2% of provider respondents provided prognostic counseling concerning phenoconversion.
 • Only 31.8% routinely asked patient preferences about receiving counseling.

• Vast majority of RBD patients desire complete information concerning prognostic counseling; 96% preferred even greater information.
RBD
SYMPTOMATIC
TREATMENT
RBD TREATMENT: MELATONIN VS. CLONAZEPAM

RBD TREATMENT:
MELATONIN VS. CLONAZEPAM

RBD TREATMENT: BEYOND MELATONIN AND CLONAZEPAM

- Other benzodiazepines (triazolam, lorazepam)

- Donepezil, rivastigmine

- Pramipexole

- Treatment of OSA comorbidity may help in some cases

- Better grade evidence sorely needed for symptomatic therapies
RBD LONGITUDINAL FOLLOW-UP

• **Interval history** for symptoms of prodromal parkinsonism
 - Hyposmia
 - Orthostatic hypotension
 - Constipation
 - Cognitive symptoms
 - Motor/balance symptoms: gait, hand-writing, falls/near-falls

• **Neurological examination**
 - Bedside cognitive assessment
 - Standing blood pressure – assure >90 mm Hg
 - Motor exam
 - Bradykinesia
 - Rigidity
 - Postural instability
 - Tremor
CONCLUSIONS

• Isolated RBD is common - 1-2% community adults, up to 5% of sleep clinic populations and 7-13% of older adults

• RBD is prodromal synucleinopathy in most older adults; 70-75% develop MCI, PD, DLB, or MSA, yet individualizing prognosis, especially counseling, remains challenging – longitudinal follow-up key.

• Treatment with melatonin 3-12 mg or clonazepam 0.25-2.0 mg.
NORTH AMERICAN PRODROMAL SYNUCLEINOPATHY CONSORTIUM
NAPS-RBD.ORG

Ju, Boeve, Postuma, Avidan, Bliwise, During, Howell, Huddleston, Lee-Ianotti, Lim, Schenck, Schprecher, St. Louis, Videnovic; NIH-NIA, 2018-2026

N=10 No. Am. Ctrs, 2023-2026
N=360
GRATITUDE AND ACKNOWLEDGEMENTS

Collaborators

• Stu McCarter, M.D.
• Laurene LeClair-Visonneau, M.D., Ph.D. (Universite de Nantes, France)
• Brad Boeve, MD
• Michael Silber, MB ChB
• Diego Carvalho, M.D.
• Virend Somers, MD, Ph.D
• Greg Worrell, MD, PhD

Sleep Behavior and Neurophysiology Research Lab

• John Feemster, M.D.
• Thomas Gossard, B.A.
• Tom Finstuen, RPGT.
• Jack Jagielski, B.A.
• Emma Strainis, B.S.
• Olivia Cesarone

Funding Sources

NIH NIA, NINDS

• Mayo Clinic CCaTS and ADRC
• Spark, Inc.
• Sunovion, Inc.
THANKS!

Sleep Behavior and Neurophysiology Research Laboratory

Mayo Clinic and Foundation
Rochester, Minnesota

rbd@mayo.edu
QUESTIONS & DISCUSSION

StLouis.Erik@mayo.edu
RBD@mayo.edu
THANK YOU FOR JOINING US IN THIS COURSE

Rochester, Minnesota
Phoenix, Arizona
Jacksonville, Florida
THANK YOU FOR JOINING US IN THIS COURSE

Rochester, Minnesota
Phoenix, Arizona
Jacksonville, Florida