
NEW PRODUCT FOR ABDOMINAL WALL RECONSTRUCTION

GORE® ENFORM Biomaterial

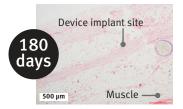
- Optimal handling
- Infiltration to enable vascularization
- Regeneration to leave only healthy tissue

INFILTRATION

to enable vascularization:

Optimal pore size^{1, 2} facilitates rapid cell infiltration and vascularization

2X fibrous tissue ingrowth* compared to popular biologics3

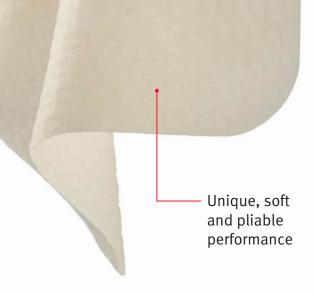

INTEGRATION

to support healthy

tissue formation:

Vascularized tissue throughout the matrix delivers cells and nutrients to the site for rapid tissue ingrowth

3X fibrous tissue ingrowth* compared to popular biologics³

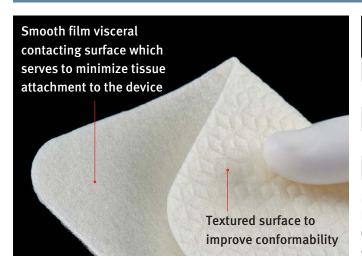


REGENERATION

to leave only healthy tissue:

Uniform collagen replaces the bioabsorbable matrix

Uniform, mature collagen replaces the bioabsorbable matrix*, 4



Configurations for preperitoneal placement

Catalogue Number	Dimensions (cm x cm)
GBWR0616	6 x 16
GBWR0816	8 x 16
GBWR1010	10 x 10
GBWR1016	10 x 16
GBWR1620	16 x 20
GBWR2020	20 x 20
GBWR2025	20 x 25
GBWR2030	20 x 30
GBWR2040	20 x 40
GBWR2540	25 x 40
GBWR3030	30 x 30
GBWR3040	30 x 40

Configurations for intraperitoneal placement

Catalogue Number	Dimensions (cm x cm)
GBFR0816	8 x 16
GBFR1016	10 x 16
GBFR1620	16 x 20
GBFR2025	20 x 25
GBFR2540	25 x 40

Both the textured ingrowth surface and the smooth FILM surface are comprised of synthetic absorbable (polyglycolic acid: trimethylene carbonate) copolymer (PGA:TMC).

W. L. GORE & ASSOCIATES, INC.

Flagstaff, AZ 86004

+65.67332882 (Asia Pacific) 800.437.8181 (United States) 00800.6334.4673 (Europe) 928.779.2771 (United States)

goremedical.com

- * Results may not correlate to clinical performance in humans.
- 1. Sharkawy AA, Klitzman B, Truskey GA, Reichert WM. Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. Journal of Biomedical Materials Research 1998;40(4):586-597.
- 2. Rosengren A, Bjursten LM. Pore size in implanted polypropylene filters is critical for tissue organization. Biomedical Materials Research. Part A. 2003;67(3):918-926.
- 3. Sanchez R, Crawford N. Tissue Characterization of GORE TRX, STRATTICETM Reconstructive Tissue Matrix, XenMatrixTM Surgical Graft and Phasix STTM Mesh in a subcutaneous rabbit model at 30 and 90 days. Flagstaff A7-W L. Gore & Associates. Inc.: 2018. [Study protocol]. 24665C
- subcutaneous rabbit model at 30 and 90 days. Flagstaff, AZ: W. L. Gore & Associates, Inc.; 2018. [Study protocol]. 2466SC.

 4. Sanchez R, Crawford N. Tissue Characterization of GORE TRX, STRATTICE™ Reconstructive Tissue Matrix, XenMatrix™ Surgical Graft and Phasix ST™ Mesh in a subcutaneous rabbit model at 180 days. Flagstaff, AZ: W. L. Gore & Associates, Inc.; 2018. [Study protocol]. 2467SC.