HOPE IN LIVER • TRANSPLANTATION

COCHRANE REVIEW 20231

Superior clinical outcomes compared to cold storage with HOPE¹

HOPE was associated with **improvement in clinically relevant outcomes** in a **meta-analysis of 4 RCTs** evaluating the efficacy and safety of this machine perfusion technique compared with SCS.

HOPE vs. SCS¹

DBD & DCD: IMPROVED graft survival

HR 0.45; 95 % CI 0.23 – 0.87 P = 0.02

ECD-DBD: **LOWER** number of serious adverse events

OR 0.45; 95% CI 0.22-0.91 P=0.03

DCD: **REDUCED** damage to the bile ducts OR 0.31; 95% CI 0.11-0.92 P=0.03

HOPE Key Facts

Simple and effective hypothermic liver perfusion

Timepoint: end-ischemic in recipient center

simple and effective hypothermic liver perfusion in recipied						
Perfusate	Belzer MPS® (actively oxygenated)	center				
Timing & Duration	Safe perfusion up to 11.5 hours ² and a total preservation window up to 20 hours ³					
Temperature	4-12°C					
Perfusate oxygenation	≥ 60 kPa > 450 mmHg					
Technique	 ♦ Single portal perfusion ♦ Allows for various HOPE protocols 					

Liver perfusion with the VitaSmart™ System

HOPE CLINICAL RESULTS

	N	EAD	Graft Survival	Patient Survival	Complications/ SAEs	Biliary complications	NAS
DBD							
Czigan	y – ECD	-DBD (2021): im	proved 1-year gra	aft survival + fewe	er 90-day major o	omplications ⁵	
			1-year	1 year	90d CD ≥3a	All	
		n.s.	P=0.029	n.s.	P = 0.036	n.s.	
HOPE	23	17%	91%	91%	44%	17%	X
SCS	23	35%	78%	83%	74%	26%	X
Ravaio	li – ECD-	-DBD (2022): lo	wer rate of EAD +	improved 1-year	•		
		P=0.007	1-year P=0.03		90d CD ≥3b n.s.	All n.s.	
HOPE	55	13 %	98%	Χ	22%	16%	Χ
SCS	55	35%	87%	X	33%	13 %	Χ
Schleg	el (2023): less liver-rela	ted graft loss ⁷				
			Liver-rel GL P = 0.004	Patient-rel GL n.s.	90d CD ≥3a n.s.	AS	
HOPE	85	17%	0%	5%	52%	17%	1%
SCS	85	46%	7%	1%	54%	21%	4%
DCD							
Van Rij	n (2021)	: fewer non-ana	stomotic biliary	strictures ⁸			
					90d CD ≥3a	AS	P=0.03
HOPE	78	26%	X	Χ	N = 101	X	6%
SCS	78	40%	X	Χ	N = 132	Χ	18 %
DBD &	DCD						
				nd death-censore ults for unperfuse			ors (ECD-DBD
			5 year Death Censored	5 year			24 months
DBD	768	X	90%	85%	Χ	Χ	2.50%
DCD	434	X	81%	78%	X	X	11.50 %
Reich -	- (under	review): lower r	ate of EAD + few	er complications ¹⁰	0		
		P<0.001	n.s.	n.s.	1-year CD ≥3a per pt P=0.048	n.s.	Clinically Releva

97%

96%

Additional relevant clinical outcomes

109

110

HOPE

SCS

Reduction in acute cellular rejection with HOPE compared to SCS¹¹

All grafts (N = 211)

or **0.54**

20%

37%

95% CI 0.29-1 P = 0.05

DCD grafts (N = 153)

95%

93%

or **0.37**

95% CI 0.14-1 P = 0.05

Maspero - meta-analysis: 6 studies (2023)11

Less HCC recurrence with HOPE

21%

28%

in DCD grafts, compared to unperfused DBD grafts12

HCC recurrence **HOPE DCD** 6 %

2.2

1.9

vs. SCS DBD 26%; P = 0.002

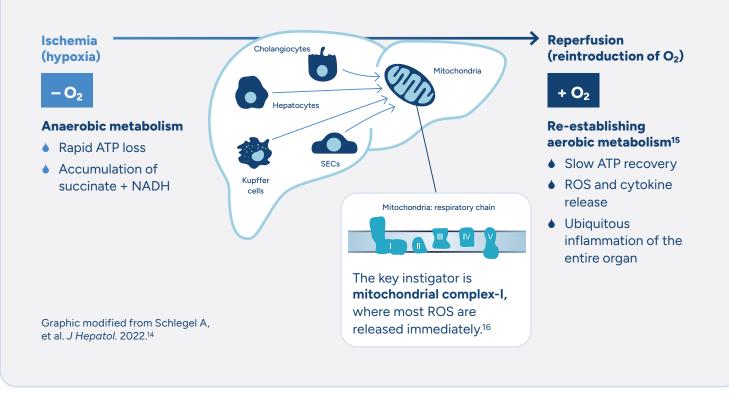
5Y tumor-free survival **HOPE DCD**

11%

19%

vs. SCS DBD 73%; P = 0.027

Mueller - matched cohort study: N = 70 per group (2020)12



PROTECTIVE MECHANISMS OF HOPE

Ischemia: mitochondrial injury in liver cells^{13,14}

Mitochondria suffer severe metabolic changes during ischemia, which become evident and aggravated after reperfusion (reoxygenation). As a consequence of normothermic reperfusion (on a device or at implantation), the full picture of the inflammatory ischemia reperfusion injury (IRI) cascade develops, including release of reactive oxygen species (ROS) from mitochondria.¹³

HOPE acts before the injury occurs^{14,15,17}

SUPPORTSNADH + ATP reloading

DECREASES

ROS release & IRI-related inflammation

REDUCES

downstream complications after LT

Viability testing during HOPE with FMN

In addition to ROS, **flavinmononucleotide (FMN)** is a complex-I molecule that is released into the perfusate upon reintroduction of oxygen. The amount of FMN released **increases with the degree of mitochondrial injury** and can be easily measured by spectroscopy, making it a **useful target for viability testing.**^{15,18}

- ♦ FMN from complex-I can be **quantified** during HOPE^{15,19}
- ♦ Perfusate levels of FMN correspond with clinical outcomes¹⁹
- First assessment after 30 min of perfusion^{15,19}
- Internationally validated approach published²⁰
- FMN validated as a predictor of EAD and patient survival²¹

BRIDGE TO HOPE US TRIAL RESULTS

Bridge to HOPE randomized trial demonstrates promising benefits for HOPE over SCS alone¹⁰

HOPE = 20%, vs. SCS = 37%, p<0.001

Steroid resistant rejection **HOPE = 1%**, SCS = 8%, p=0.03

Overall CD ≥3a complications/ patient

HOPE = 138 complications in 73 patients,

SCS = 170 complications in 78 patients, p=0.048

Liver-related CD ≥3a complications/ patient

HOPE = 51 complications in 36 patients, SCS = 78 complications in 54 patients, p=0.014

Median hospital length of stay HOPE = 8 days,

SCS = 11 days, p=0.04

For more information about HOPE and other innovative products, visit www.bridgetolife.com

Download a digital copy of this and other HOPE and product documents.

AS: anastomotic strictures; ATP: adenosine triphosphate; CD: Clavien-Dindo classification; CI: confidence interval; DBD: donation after brain death; DCD: donation after circulatory death; EAD: early allograft dysfunction; ECD: extended-criteria donor; FMN: flavinmononucleotide; GL: graft loss; HCC: hepatocellular carcinoma; HOPE: hypothermic oxygenated machine perfusion; HR: Hazard Ratio; IRI: ischemia/reperfusion injury; LT: liver transplantation; MPS: machine perfusion solution; NADH: nicotinamide adenine dinucleotide; NAS: non-anastomotic strictures; OR: odds ratio; RCT: randomized controlled trial; ROS: reactive oxygen species; SCS: static cold storage

1. Tingle SJ, et al. Machine perfusion in liver transplantation. Cochrane Database Syst Rev. 2023;9(9):CD014685. 2. Boteon A. et al. Eleven hours of hypothermic oxygenated machine perfusion (HOPE) for complex liver retransplantation: A case report. Artificial Organs. 2023;00:1-3 3. Brüggenwirth IMA, et al. Prolonged hypothermic machine perfusion enables daytime liver transplantation - an IDEAL stage 2 prospective clinical trial. EClinicalMedicine. 2024;68:102411. 4. Czigany Z, et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann Surg. 2021;274(5):705-712. 5. Czigany Z, et al. Improved outcomes after hypothermic oxygenated machine perfusion in liver transplantation-Long-term follow-up of a multicenter randomized controlled trial. Hepatol Commun. 2024;8(2):e0376. 6. Ravaioli M, et al. Hypothermic oxygenated perfusion in extended criteria donor liver transplantation – A randomized clinical trial. Am J Transplant. 2022;22(10):2401-2408. 7. Schlegel A, et al. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion (HOPE) for human liver grafts before transplantation. J Hepatol. 2023;78(4):783-793. 8. van Rijn R, et al. Hypothermic Machine Perfusion in Liver Transplantation – A Randomized Trial. N Engl J Med. 2021;384(15):1391-1401. 9. Eden J, et al. Long-term outcomes after hypothermic oxygenated perfusion and transplantation of 1,202 donor livers in a real-world setting (HOPE-REAL study). JHEP. 2024.06.035) 10. Reich DJ, Mao S, Satish S, Nassar A, et al. Hypothermic Oxygenated Perfusion by End-Ischemic Portal-Venous Approach for Liver Transplantation: Results from the Bridge to HOPE Multicenter Randomized Controlled Trial (clinicaltrials.gov: NCT05045794). Manuscript under review for publication. 11. Maspero M, et al. Acute rejection after liver transplantation with machine perfusion versus static cold storage: A systematic review and meta-analysis. Hepatology. 2023;78(3):835-846. 12. Mueller M, et al. Hypothermic Oxygenated Liver Perfusion (HOPE) Prevents Tumor Recurrence in Liver Transplantation From Donation After Circulatory Death. Ann Surg. 2020;272(5):759-765. 13. Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431-435. 14. Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol. 2022;76(6):1330-1347. 15. Schlegel A, et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine. 2020;60:103014. 16. Wang L, et al. Flavin Mononucleotide as a Biomarker of Organ Quality-A Pilot Study. Transplant Direct. 2020;6(9):e600. 17. Boteon Y, et al. Preventing Tumour Recurrence after Liver Transplantation: The Role of Machine Perfusion. Int J Mol Sci. 2020;21(16):5791. 18. Panconesi R, et al. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines. 2021;9(2):161. 19. Muller X, et al. Novel Real-time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann Surg. 2019;270(5):783-790. 20. Sun K, et al. Quantifying Flavin mononucleotide: an internationally validated methodological approach for enhanced decision making in organ transplantation. eBioMedicine 2025;116:105761 21. Dingfelder J. et al. Validation of mitochondrial FMN as a predictor for early allograft dysfunction and patient survival measured during hypothermic oxygenated perfusion. Liver Transpl. 2025;31(4):476-488.

VitaSmart™ is CE Marked and available for sale in several markets outside of the United States. VitaSmart™ has not been cleared by the FDA, and the safety and effectiveness of VitaSmart™ has not been established in the US.

